1
|
Tang Y, Ju X, Chen X, Li L. Advances in the biological production of sugar alcohols from biomass-derived xylose. World J Microbiol Biotechnol 2025; 41:110. [PMID: 40148723 DOI: 10.1007/s11274-025-04316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Sugar alcohols are a common class of low-calorie sweeteners. The advancement of technologies utilizing renewable resources has heightened interest in synthesizing sugar alcohols from biomass-derived xylose for cost down of process and sustainability. This review focuses on the potential of biomass-derived xylose and its effective conversion into sugar alcohols, underscoring the significance of this process in sustainable industrial applications. The two main approaches for producing sugar alcohols which include enzyme catalysis and microbial fermentation are thoroughly discussed. The microbial fermentation pathway relies on genetically engineered strains, which are modified to efficiently convert xylose into target sugar alcohols. Enzyme catalysis, on the other hand, directly converts xylose to sugar alcohols through specific reactions. In addition, strategies to improve product selectivity and reduce by-products are discussed in the paper, which are crucial for improving the economic viability and environmental sustainability of sugar alcohol production. Overall, utilizing xylose from biomass to produce sugar alcohols manifests environmental and economic benefits, indicating its substantial potential in the shift towards a low-carbon economy. Future studies may further explore cutting edge technologies to maximize the utilization of biomass-derived xylose and the sustainable production of sugar alcohols.
Collapse
Affiliation(s)
- Yue Tang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Xin Ju
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Xiaobao Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Liangzhi Li
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China.
| |
Collapse
|
2
|
Matsumoto K, Higashi K, Naka Y, Ito K, Akita M. A liquid static culture using a gas-permeable film bag contributes to microbiology. Sci Rep 2024; 14:23649. [PMID: 39384930 PMCID: PMC11464806 DOI: 10.1038/s41598-024-74954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
We propose a simple tool for liquid static culture using a copolymer film with high gas permeability. The film bags were successfully used to culture microorganisms Escherichia coli, Komagataella phaffii (methylotrophic) and Bacillus sp. (biofilm-forming), with cells cultured under physical stress-free conditions with sufficient oxygen supply. Similar growth curves and plasmid productivity were observed for liquid shake and film bag E. coli cultures. The early growth response of the film bag culture following colony inoculation of liquid media differed from conventional shake cultures. Our results indicate that a gas-permeable film bag is a promising liquid culture tool and provides novel microbiology materials.
Collapse
Affiliation(s)
- Kotaro Matsumoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Kazuya Higashi
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Yuki Naka
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Kenji Ito
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
- Cell Film Laboratory Co. Ltd., c/o Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Motomu Akita
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
- Cell Film Laboratory Co. Ltd., c/o Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| |
Collapse
|
3
|
Kaya U, Gopireddy S, Urbanetz N, Kreitmayer D, Gutheil E, Nopens I, Verwaeren J. Quantifying the hydrodynamic stress for bioprocesses. Biotechnol Prog 2023; 39:e3367. [PMID: 37293967 DOI: 10.1002/btpr.3367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
Hydrodynamic stress is an influential physical parameter for various bioprocesses, affecting the performance and viability of the living organisms. However, different approaches are in use in various computational and experimental studies to calculate this parameter (including its normal and shear subcomponents) from velocity fields without a consensus on which one is the most representative of its effect on living cells. In this letter, we investigate these different methods with clear definitions and provide our suggested approach which relies on the principal stress values providing a maximal distinction between the shear and normal components. Furthermore, a numerical comparison is presented using the computational fluid dynamics simulation of a stirred and sparged bioreactor. It is demonstrated that for this specific bioreactor, some of these methods exhibit quite similar patterns throughout the bioreactor-therefore can be considered equivalent-whereas some of them differ significantly.
Collapse
Affiliation(s)
- Umut Kaya
- Supply Chain Operations, Pharmaceutical Development, Daiichi Sankyo Europe GmbH, Pfaffenhofen, Germany
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Srikanth Gopireddy
- Supply Chain Operations, Pharmaceutical Development, Daiichi Sankyo Europe GmbH, Pfaffenhofen, Germany
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Nora Urbanetz
- Supply Chain Operations, Pharmaceutical Development, Daiichi Sankyo Europe GmbH, Pfaffenhofen, Germany
| | - Diana Kreitmayer
- Supply Chain Operations, Pharmaceutical Development, Daiichi Sankyo Europe GmbH, Pfaffenhofen, Germany
| | - Eva Gutheil
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Ingmar Nopens
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Jan Verwaeren
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Barros PL, Ein-Mozaffari F, Lohi A. Power Consumption Characterization of Energy-Efficient Aerated Coaxial Mixers Containing Yield-Stress Biopolymer Solutions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paloma L. Barros
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Farhad Ein-Mozaffari
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Ali Lohi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
5
|
Benner P, Meier L, Pfeffer A, Krüger K, Oropeza Vargas JE, Weuster-Botz D. Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 2022; 45:791-813. [PMID: 35303143 PMCID: PMC9033726 DOI: 10.1007/s00449-022-02711-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.
Collapse
Affiliation(s)
- Philipp Benner
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lisa Meier
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Annika Pfeffer
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Konstantin Krüger
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - José Enrique Oropeza Vargas
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany.
- Technical University of Munich, TUM-AlgaeTec Center, 85521, Taufkirchen, Germany.
| |
Collapse
|
6
|
Kaya U, Gopireddy S, Urbanetz N, Nopens I, Verwaeren J. Predicting the Hydrodynamic Properties of a Bioreactor: Conditional Density Estimation as a Surrogate Model for CFD Simulations. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Gas Dispersion in Non-Newtonian Fluids with Mechanically Agitated Systems: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10020275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gas dispersion in non-Newtonian fluids is encountered in a broad range of chemical, biochemical, and food industries. Mechanically agitated vessels are commonly employed in these processes because they promote high degree of contact between the phases. However, mixing non-Newtonian fluids is a challenging task that requires comprehensive knowledge of the mixing flow to accurately design stirred vessels. Therefore, this review presents the developments accomplished by researchers in this field. The present work describes mixing and mass transfer variables, namely volumetric mass transfer coefficient, power consumption, gas holdup, bubble diameter, and cavern size. It presents empirical correlations for the mixing variables and discusses the effects of operating and design parameters on the mixing and mass transfer process. Furthermore, this paper demonstrates the advantages of employing computational fluid dynamics tools to shed light on the hydrodynamics of this complex flow. The literature review shows that knowledge gaps remain for gas dispersion in yield stress fluids and non-Newtonian fluids with viscoelastic effects. In addition, comprehensive studies accounting for the scale-up of these mixing processes still need to be accomplished. Hence, further investigation of the flow patterns under different process and design conditions are valuable to have an appropriate insight into this complex system.
Collapse
|
8
|
Insights of Raceway Bioreactor Scale-Up: Effect of Agitation on Microalgae Culture and Reduction of the Liquid Medium Speed. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The scaling of Raceway bioreactors was studied by geometric and mechanical similarity, with an order of magnitude of 1:10. The hydrodynamic parameters involved (flow velocity, hydrodynamic stress or shear stress, dimensionless numbers of Re, Fr, and Euler Power) at different stirring speeds (30, 35, 40, and 45 rpm) were determined. The study, carried out using low-density particle imaging velocimetry (PIV), showed that the speed of the liquid medium remains above 30 cm/s from 30 rpm, which ensures turbulence in the system. The flow velocity suffers a decrease of approximately 18%, at different angular velocities, with similar biomass concentrations (3.24 × 105–3.72 × 105 cells/mL). This decrease in speed directly affects the values of all the parameters involved in the bioreactor. Furthermore, the measurement of hydrodynamic stress (τ) indicates that the microorganisms are exposed to a value of 0.299 Pa at 35 rpm and 0.370 Pa at 40 rpm. Due to mechanical agitation, hydrodynamic stress values in Raceway systems have not been previously reported. The studies were carried out in a 10 L Raceway bioreactor using a consortium of microalgae and cyanobacteria where Spirulina sp. and Pseudanabaena sp. predominate.
Collapse
|
9
|
Individual effect of shear rate and oxygen transfer on clavulanic acid production by Streptomyces clavuligerus. Bioprocess Biosyst Eng 2021; 44:1721-1732. [PMID: 33821325 DOI: 10.1007/s00449-021-02555-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
The production of biocompounds through the cultivation of filamentous microorganisms is mainly affected by Oxygen Transfer Rate (OTR) and shear rate ([Formula: see text]) conditions. Despite efforts have been made to evaluate the effect of operating variables (impeller speed, N; and airflow rate, ϕair) on clavulanic acid production, no analysis regarding the effect of OTR and [Formula: see text] was made. Then, the aim of this study was to evaluate the dissociated effect of physical phenomena such as oxygen transfer and shear rate in the production of clavulanic acid from Streptomyces clavuligerus using a stirred tank bioreactor. Streptomyces clavuligerus cultivations were performed at five different OTR and [Formula: see text] conditions by manipulating the operating conditions (N, ϕair, and gas inlet composition). Cultivations performed at equal impeller speed (600 rpm, similar [Formula: see text]) using oxygen enrichment, showed that CA productivity (ProdCA) was positively affected by OTR increase. Subsequently, the different shear conditions (achieved by varying the impeller speed) lead to an increase in CA production levels. Despite both OTR and shear rate positively enhanced CA productivity, [Formula: see text] exhibited the highest impact: an increase of 145% in OTRinitial enhanced the clavulanic acid productivity of about 29%, while an increment in the shear rate of 134% raised the ProdCA in 53%.
Collapse
|
10
|
Garcia-Ochoa F, Gomez E, Santos VE. Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR: An overview. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Conti F, Saidi A, Goldbrunner M. Numeric Simulation‐Based Analysis of the Mixing Process in Anaerobic Digesters of Biogas Plants. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fosca Conti
- Technische Hochschule Ingolstadt Institute of new Energy Systems Esplanade 10 85049 Ingolstadt Germany
- University of Padova Department of Chemical Sciences via Marzolo 1 35141 Padova Italy
| | - Abdessamad Saidi
- Technische Hochschule Ingolstadt Institute of new Energy Systems Esplanade 10 85049 Ingolstadt Germany
| | - Markus Goldbrunner
- Technische Hochschule Ingolstadt Institute of new Energy Systems Esplanade 10 85049 Ingolstadt Germany
| |
Collapse
|
12
|
Accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Azotobacter vinelandii with different 3HV fraction in shake flasks and bioreactor. Bioprocess Biosyst Eng 2020; 43:1469-1478. [PMID: 32266468 DOI: 10.1007/s00449-020-02340-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
In the present study, the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Azotobacter vinelandii was evaluated in shake flasks and bioreactors, utilizing different precursors and oxygen transfer rates (OTRs). In shake flask cultures, the highest PHBV yield from sucrose (0.16 g g-1) and 3-hydroxyvalerate (3HV) fraction in the PHA chain (27.4 mol%) were obtained with valerate (1.0 g L-1). In the bioreactor, the cultures were grown under oxygen-limited conditions, and the maximum OTR (OTRmax) was varied by adjusting the agitation rate. In the cultures grown at low OTRmax (4.3 mmol L-1 h-1), the intracellular content of PHBV (73% w w-1) was improved, whereas a maximum 3HV fraction (35 mol %) was obtained when a higher OTRmax (17.2 mmol L-1 h-1, to 600 rpm) was employed. The findings obtained suggest that the PHBV production and the content of 3HV incorporated into the polymer were affected by the OTR. Based on the evidence, it is possible to produce PHBV with a different composition by varying the OTR of the culture; thus, the approach in this study could be used to scale up PHBV production.
Collapse
|
13
|
Wilson SA, Maindarkar SN, McKee MC, Vilkhovoy M, Henson MA, Roberts SC. A population balance model to modulate shear for the control of aggregation in Taxus suspension cultures. Biotechnol Prog 2019; 36:e2932. [PMID: 31622535 DOI: 10.1002/btpr.2932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/07/2022]
Abstract
Cellular aggregation in plant suspension cultures directly affects the accumulation of high value products, such as paclitaxel from Taxus. Through application of mechanical shear by repeated, manual pipetting through a 10 ml pipet with a 1.6 mm aperture, the mean aggregate size of a Taxus culture can be reduced without affecting culture growth. When a constant level of mechanical shear was applied over eight generations, the sheared population was maintained at a mean aggregate diameter 194 μm lower than the unsheared control, but the mean aggregate size fluctuated by over 600 μm, indicating unpredictable culture variability. A population balance model was developed to interpret and predict disaggregation dynamics under mechanical shear. Adjustable parameters involved in the breakage frequency function of the population balance model were estimated by nonlinear optimization from experimentally measured size distributions. The optimized model predictions were in strong agreement with measured size distributions. The model was then used to determine the shear requirements to successfully reach a target aggregate size distribution. This model will be utilized in the future to maintain a culture with a constant size distribution with the goal of decreasing culture variability and increasing paclitaxel yields.
Collapse
Affiliation(s)
- Sarah A Wilson
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Shashank N Maindarkar
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Michelle C McKee
- Departement of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Michael Vilkhovoy
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Michael A Henson
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Susan C Roberts
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
14
|
Effects of fluid-dynamic conditions in Shimwellia blattae (p424IbPSO) cultures in stirred tank bioreactors: Hydrodynamic stress and change of metabolic routes by oxygen availability. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
de la Morena S, Santos VE, García-Ochoa F. Influence of oxygen transfer and uptake rates on dihydroxyacetone production from glycerol by Gluconobacter oxydans in resting cells operation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Li G, Li H, Wei G, He X, Xu S, Chen K, Ouyang P, Ji X. Hydrodynamics, mass transfer and cell growth characteristics in a novel microbubble stirred bioreactor employing sintered porous metal plate impeller as gas sparger. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Vlaev SD, Tsibranska I, Dzhonova-Atanasova D. Hydrodynamic characterization of dual-impeller submerged membrane bioreactor relevant to single-use bioreactor options. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Trad Z, Vial C, Fontaine JP, Larroche C. Mixing and liquid-to-gas mass transfer under digester operating conditions. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.01.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Liu X, Yang S, Wang F, Dai X, Yang Y, Bai Z. RETRACTED ARTICLE: Comparative analysis of the Corynebacterium glutamicum transcriptome in response to changes in dissolved oxygen levels. ACTA ACUST UNITED AC 2017; 44:181-195. [DOI: 10.1007/s10295-016-1854-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022]
Abstract
Abstract
The dissolved oxygen (DO) level of a culture of Corynebacterium glutamicum (C. glutamicum) in a bioreactor has a significant impact on the cellular redox potential and the distribution of energy and metabolites. In this study, to gain a deeper understanding of the effects of DO on the metabolism of C. glutamicum, we sought to systematically explore the influence of different DO concentrations on genetic regulation and metabolism through transcriptomic analysis. The results revealed that after 20 h of fermentation, oxygen limitation enhanced the glucose metabolism, pyruvate metabolism and carbon overflow, and restricted NAD+ availability. A high oxygen supply enhanced the TCA cycle and reduced glyoxylate metabolism. Several key genes involved in response of C. glutamicum to different oxygen concentrations were examined, which provided suggestions for target site modifications in developing optimized oxygen supply strategies. These data provided new insights into the relationship between oxygen supply and metabolism of C. glutamicum.
Collapse
Affiliation(s)
- Xiuxia Liu
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Sun Yang
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Fen Wang
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Xiaofeng Dai
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Yankun Yang
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Zhonghu Bai
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| |
Collapse
|
20
|
Brun T, Rabuske JE, Todero I, Almeida TC, Junior JJD, Ariotti G, Confortin T, Arnemann JA, Kuhn RC, Guedes JVC, Mazutti MA. Production of bioherbicide by Phoma sp. in a stirred-tank bioreactor. 3 Biotech 2016; 6:230. [PMID: 28330302 PMCID: PMC5083679 DOI: 10.1007/s13205-016-0557-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022] Open
Abstract
The objective of this work was to produce an herbicide by submerged fermentation in a stirred-tank bioreactor and to assess the potential herbicidal in pre-emergence, post-emergence, and in a detached leaves of Cucumis sativus var species. wisconsin (cucumber) and Sorghum bicolor (sorghum) species. Fermentations were carried out in a stirred-tank bioreactor with useful volume of 3L. Stirring rate (40, 50, and 60 rpm) and aeration (1, 2 and 3 vvm) were the variables studied for bioherbicide production. Fermented broth was fractioned with different solvents to identify the molecules produced by the fungus in a multi-dimensional gas chromatograph system. Bioherbicide showed 100% inhibition of germination of both species in the pre-emergence tests. From detached leaves tests were verified yellowish lesions in Cucumis sativus and necrotic lesions on leaves of Sorghum bicolor. Post-emergence test presented variation of the phytotoxicity from 25 to 66% for the species C. sativus and from 32 to 58% by S. bicolor. The metabolites produced by submerged fermentation of Phoma sp. presented activity in pre-emergence, post-emergence, and detached leaves of C. sativus and S. bicolor and it could be an alternative in the future for weed control.
Collapse
Affiliation(s)
- Thiarles Brun
- Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Jéssica E Rabuske
- Department of Crop Protection, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Izelmar Todero
- Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Thiago C Almeida
- Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Jair J D Junior
- Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Gustavo Ariotti
- Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Tássia Confortin
- Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Jonas A Arnemann
- Department of Crop Protection, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Raquel C Kuhn
- Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Jerson V C Guedes
- Department of Crop Protection, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
21
|
Schelden M, Lima W, Doerr EW, Wunderlich M, Rehmann L, Büchs J, Regestein L. Online measurement of viscosity for biological systems in stirred tank bioreactors. Biotechnol Bioeng 2016; 114:990-997. [DOI: 10.1002/bit.26219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/18/2016] [Accepted: 11/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Maximilian Schelden
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
| | - William Lima
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
- UFMG-Federal University of Minas Gerais; Montes Claros-MG Brazil
| | - Eric Will Doerr
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
- Department of Chemical and Biochemical Engineering; University of Western Ontario; London Ontario Canada
| | - Martin Wunderlich
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
| | - Lars Rehmann
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
- Department of Chemical and Biochemical Engineering; University of Western Ontario; London Ontario Canada
| | - Jochen Büchs
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
| | - Lars Regestein
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
| |
Collapse
|
22
|
Wang L, Li Y, Niu L, Zhang W, Li J, Yang N. Experimental studies and kinetic modeling of the growth of phenol-degrading bacteria in turbulent fluids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22711-22720. [PMID: 27557974 DOI: 10.1007/s11356-016-7460-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Understanding the interaction between microorganisms and fluid dynamics is important for aquatic ecosystems, though only sporadic attention has been focused on this topic in the past. In this study, particular attention was paid to the phenol-degrading bacterial strains Microbacterium oxydans LY1 and Alcaligenes faecalis LY2 subjected to controlled fluid flow under laboratory conditions. These two strains were found to be able to degrade phenols over a concentration range from 50 to 500 mg/L under different turbulence conditions ranging from 0 to 250 rpm. The time it took to reach total phenol degradation decreased when the turbulence was increased in both strains, with increasing energy dissipation rates ranging from 0.110 to 6.241 W/kg, corresponding to changes in the bacterial diffusive sublayer thickness (δ) and enhanced oxygen uptake. Moreover, the maximum specific growth rates of the two strains also increased with the enhancement of turbulence. A model integrating growth inhibition and fluid motion was proposed based on the self-inhibition Haldane model by introducing a turbulence parameter, α. The resulting modified Haldane model was designed to include fluid motion as a variable in the quantification of the physiological responses of microorganisms. This modified Haldane model could be considered a useful laboratory reference when modeling procedures for water environment bioremediation. Graphical abstract Cell nutrition uptake cartoon schematic diagram for M. oxydans LY1 under different turbulent condition (50 and 200 rpm).
Collapse
Affiliation(s)
- Linqiong Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Jie Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| |
Collapse
|
23
|
Buffo M, Corrêa L, Esperança M, Cruz A, Farinas C, Badino A. Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Escobar S, Rodriguez A, Gomez E, Alcon A, Santos VE, Garcia-Ochoa F. Influence of oxygen transfer on Pseudomonas putida effects on growth rate and biodesulfurization capacity. Bioprocess Biosyst Eng 2016; 39:545-54. [PMID: 26762940 DOI: 10.1007/s00449-016-1536-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
The growth rate and desulfurization capacity accumulated by the cells during the growth of Pseudomonas putida KTH2 under different oxygen transfer conditions in a stirred and sparged tank bioreactor have been studied. Hydrodynamic conditions were changed using different agitation conditions. During the culture, several magnitudes associated to growth, such as the specific growth rate, the dissolved oxygen concentration and the carbon source consumption have been measured. Experimental results indicate that cultures are influenced by the fluid dynamic conditions into the bioreactor. An increase in the stirrer speed from 400 to 700 rpm has a positive influence on the cell growth rate. Nevertheless, the increase of agitation from 700 to 2000 rpm hardly has any influence on the growth rate. The effect of fluid dynamics on the cells development of the biodesulfurization (BDS) capacity of the cells during growth is different. The activities of the intracellular enzymes involved in the 4S pathway change with dissolved oxygen concentration. The enzyme activities have been evaluated in cells at several growth time and different hydrodynamic conditions. An increase of the agitation from 100 to 300 rpm has a positive influence on the development of the overall BDS capacity of the cells during growth. This capacity shows a decrease for higher stirrer speeds and the activity of the enzymes monooxygenases DszC and DszA decreases dramatically. The highest value of the activity of DszB enzyme was obtained with cells cultured at 100 rpm, while this activity decreases when the stirrer speed was increased higher than this value.
Collapse
Affiliation(s)
- S Escobar
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - A Rodriguez
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - E Gomez
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - A Alcon
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - V E Santos
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Felix Garcia-Ochoa
- Chemical Engineering Department, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
25
|
Gomez E, Alcon A, Escobar S, Santos V, Garcia-Ochoa F. Effect of fluiddynamic conditions on growth rate and biodesulfurization capacity of Rhodococcus erythropolis IGTS8. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Specific oxygen uptake rate as indicator of cell response of Rhodococcus erythropolis cultures to shear effects. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. ACTA ACUST UNITED AC 2014; 10:2663-76. [DOI: 10.1039/c4mb00198b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex metabolic flux pattern ofX. campestris.
Collapse
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Heiko Neuweger
- Computational Genomics
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Germany
| | - Tony Francis Watt
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Bielefeld, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Christoph Wittmann
- Institut für Systembiotechnologie
- Universität des Saarlandes
- Saarbrücken, Germany
| | - Karsten Niehaus
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
- Institut für Genomforschung und Systembiologie
| |
Collapse
|