1
|
Ahmadi AN, Ganjeali A, Mohassel MHR, Mashreghi M. Controlled release of trifluralin herbicide using luminescent Vibrio-derived polyhydroxyalkanoate (PHA) microcapsules. Int J Biol Macromol 2025; 289:138845. [PMID: 39694375 DOI: 10.1016/j.ijbiomac.2024.138845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The controlled release of herbicides using new and safe materials can mitigate environmental pollution. Polyhydroxyalkanoate (PHA) is a type of biopolymer that can be produced by various bacteria. It has properties that make it suitable for encapsulation and controlled release applications. A luminescent bacterium, Vibrio sp. VLC strain was used as the PHA producer in this study. Initially, the polymer was synthesized by the bacterium following optimization of the culture medium, resulting in an approximate yield of 25 %. Subsequently, the produced polymer was analyzed using TEM, FTIR, and H-NMR techniques. Microcapsules were produced using the emulsion method. FE-SEM imaging revealed spherical microcapsules with an average diameter of 0.5-2 μm. The herbicide loading content and encapsulation efficiency were determined to be 16.64 % and 66.56 %, respectively. The herbicidal effect of the microcapsules containing trifluralin was investigated using Amaranthus retroflexus and Setaria viridis plants, demonstrating a significant reduction in various parameters after application. Furthermore, the impact of encapsulated herbicide on soil microbial population was assessed, revealing a less negative effect compared to its free form. These findings suggest that the PHA from a luminescent vibrio holds promise as an eco-friendly, biodegradable, nontoxic material for the controlled release of herbicides.
Collapse
Affiliation(s)
- Arefe N Ahmadi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Noroozi K, Jarboe LR. Strategic nutrient sourcing for biomanufacturing intensification. J Ind Microbiol Biotechnol 2023; 50:kuad011. [PMID: 37245065 PMCID: PMC10549214 DOI: 10.1093/jimb/kuad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
The successful design of economically viable bioprocesses can help to abate global dependence on petroleum, increase supply chain resilience, and add value to agriculture. Specifically, bioprocessing provides the opportunity to replace petrochemical production methods with biological methods and to develop novel bioproducts. Even though a vast range of chemicals can be biomanufactured, the constraints on economic viability, especially while competing with petrochemicals, are severe. There have been extensive gains in our ability to engineer microbes for improved production metrics and utilization of target carbon sources. The impact of growth medium composition on process cost and organism performance receives less attention in the literature than organism engineering efforts, with media optimization often being performed in proprietary settings. The widespread use of corn steep liquor as a nutrient source demonstrates the viability and importance of "waste" streams in biomanufacturing. There are other promising waste streams that can be used to increase the sustainability of biomanufacturing, such as the use of urea instead of fossil fuel-intensive ammonia and the use of struvite instead of contributing to the depletion of phosphate reserves. In this review, we discuss several process-specific optimizations of micronutrients that increased product titers by twofold or more. This practice of deliberate and thoughtful sourcing and adjustment of nutrients can substantially impact process metrics. Yet the mechanisms are rarely explored, making it difficult to generalize the results to other processes. In this review, we will discuss examples of nutrient sourcing and adjustment as a means of process improvement. ONE-SENTENCE SUMMARY The potential impact of nutrient adjustments on bioprocess performance, economics, and waste valorization is undervalued and largely undercharacterized.
Collapse
Affiliation(s)
- Kimia Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Amiri S, Mohammadi Zeydi M, Amiri N. Bacillus cereus saba.zh, a novel bacterial strain for the production of bioplastic (polyhydroxybutyrate). Braz J Microbiol 2021; 52:2117-2128. [PMID: 34510397 DOI: 10.1007/s42770-021-00599-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
The identification of novel bacterial strains with a high production potential of polyhydroxybutyrate (PHB) to substitute the bioplastics with non-biodegradable plastics and reducing environmental pollution is really effective. The present study was done with the purpose of PHB bioplastic production using a novel bacterial strain. Twenty-one different bacterial isolates were obtained from petrochemical wastewater, which among them, 10 isolates were PHB positive. The presence of PHB granules was detected in the isolates using Sudan Black B staining. The most excellent PHB-accumulating bacterium with a maximum yield of PHB (61.53%) was selected and identified as Bacillus cereus saba.zh, based on morphological, biochemical, and molecular techniques. 16S rRNA nucleotide sequence of the bacterium was assigned accession number: MT975245 in the NCBI database. The phylogenetic tree data showed that the closest type strain to the Bacillus cereus saba.zh is the Bacillus cereus SDB4 (91%). The three genes (phaA, phaB, and phaC) responsible for the PHB biosynthesis were amplified using the specific oligonucleotide primers by PCR technique. The highest PHB yield was achieved when the culture medium was supplemented with 3% sugarcane molasses as a carbon source, ammonium sulfate as the nitrogen source, at pH 7, and temperature of 30 °C. The characterization of the extracted polymer by FTIR and 1H NMR spectroscopy proves the presence of methyl, methylene, methine, hydroxyl, and ester carbonyl groups and confirmed the structure of biopolymer as PHB. The novel strain Bacillus cereus saba.zh has good potential as an appropriate candidate for low-cost industrial production of bioplastic.
Collapse
Affiliation(s)
- Saba Amiri
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | | | - Nasim Amiri
- Department of Biochemistry, Babol Branch, Islamic Azad University, Babol, Iran
| |
Collapse
|
4
|
Bacillus rugosus sp. nov. producer of a diketopiperazine antimicrobial, isolated from marine sponge Spongia officinalis L. Antonie van Leeuwenhoek 2020; 113:1675-1687. [PMID: 32939598 DOI: 10.1007/s10482-020-01472-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
A novel Gram-positive and endospore-forming bacterium assigned as strain SPB7T which is also a new source of a cyclic diketopiperazine (3S,6S)-3,6-diisobutylpiperazine-2,5-dione is described. A polyphasic (biochemical, phenotypic and genotypic) approach was used to clarify the taxonomic affiliation of this strain. The partial and complete 16S rRNA gene sequences revealed that strain SPB7T is a member of the Bacillus genus [showing high similarity (> 98.70%) with Bacillus spizizenii NRRL B-23049T, Bacillus tequilensis KCTC 13622T, Bacillus inaquosorum KCTC 13429T and Bacillus cabrialesii TE3T]. The maximum values for average nucleotide identity (ANI) and in silico DNA-DNA hybridization (GGDC, Formula 2) of strain SPB7T was obtained for twenty-five strains of Bacillus spizizenii (ANI 95.01-95.48% and GGDC 62.70-60.00%). The whole-genome phylogenetic relationship showed that SPB7T formed an individual and separated clade with the Bacillus spizizenii group. Principal cellular fatty acids identified in strain SPB7T were anteiso C15:0, anteiso C17:0, iso C15:0, iso C17:0, C16:0, C10:0 3OH and iso C17:1 ϖ10c. Polar lipid profile showed presence of diphosphotidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unknown phospholipids and five unknown lipids. Cells were rod shaped, catalase, oxidase-positive and motile. Growth occurred at 20-45 °C (optimal 35 °C), at pH 6.0-10.0 (optimal pH 8) and 0-10% (w/v) NaCl (optimal 2%). The phenotypic, biochemical, and genotypic traits of strain SPB7T strongly supported its taxonomic affiliation as a novel species of the Bacillus genus, for which the name Bacillus rugosus sp. nov. is proposed. The type strain is SPB7T (= NRRL B-65559T, = CICC 24827T, = MCC 4185T).
Collapse
|
5
|
Rohit SG, Jyoti PK, Subbi RRT, Naresh M, Senthilkumar S. Kinetic modeling of hyaluronic acid production in palmyra palm (Borassus flabellifer) based medium by Streptococcus zooepidemicus MTCC 3523. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. MARINE ENVIRONMENTAL RESEARCH 2018; 140:169-179. [PMID: 29935729 DOI: 10.1016/j.marenvres.2018.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/01/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Sponges are sessile benthic filter-feeding animals, which harbor numerous microorganisms. The enormous diversity and abundance of sponge associated bacteria envisages sponges as hot spots of microbial diversity and dynamics. Many theories were proposed on the ecological implications and mechanism of sponge-microbial association, among these, the biosynthesis of sponge derived bioactive molecules by the symbiotic bacteria is now well-indicated. This phenomenon however, is not exhibited by all marine sponges. Based on the available reports, it has been well established that the sponge associated microbial assemblages keep on changing continuously in response to environmental pressure and/or acquisition of microbes from surrounding seawater or associated macroorganisms. In this review, we have discussed nutritional association of sponges with its symbionts, interaction of sponges with other eukaryotic organisms, dynamics of sponge microbiome and sponge-specific microbial symbionts, sponge-coral association etc.
Collapse
Affiliation(s)
- G Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - Sivasankari Sekar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Pasiyappazham Ramasamy
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | | | - Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Anuj Nishanth Lipton
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - A S Ninawe
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
7
|
Sathiyanarayanan G, Bhatia SK, Song HS, Jeon JM, Kim J, Lee YK, Kim YG, Yang YH. Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. Int J Biol Macromol 2017; 97:710-720. [DOI: 10.1016/j.ijbiomac.2017.01.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 02/03/2023]
|
8
|
First report on isolation of 2,3,4-trihydroxy-5-methylacetophenone from palmyra palm (Borassus flabellifer Linn.) syrup, its antioxidant and antimicrobial properties. Food Chem 2017; 228:491-496. [PMID: 28317754 DOI: 10.1016/j.foodchem.2017.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 11/23/2022]
Abstract
The first report on isolation and characterization of 2,3,4-trihydroxy-5-methylacetophenone (1), nicotinamide (2), and uracil (3) from palmyra palm syrup is described. Total phenolic content (TPC) and Total flavonoid content (TFC) of palm syrup were 244.70±5.77(mggallic acid/kg of syrup) and 658.45±27.86(mg quercetin/kg of syrup), respectively. Compound 1 exhibited DPPH radical scavenging activity with an IC50 value of 20.02±0.14μM which was better than ascorbic acid (IC50=22.59±0.30μM). Compound 1 also showed broad spectrum antibacterial activity against Escherichia coli, Mycobacterium smegmatis, Staphylococcus aureus and Staphylococcus simulans.
Collapse
|
9
|
Mass cultivation of UV-B adapted Arthrospira platensis RRGK under open raceway pond for the production of Poly-β-hydroxy butyrate. Int J Biol Macromol 2016; 93:1304-1316. [DOI: 10.1016/j.ijbiomac.2016.09.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
|
10
|
Sathiyanarayanan G, Saibaba G, Kiran GS, Yang YH, Selvin J. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Crit Rev Microbiol 2016; 43:294-312. [DOI: 10.1080/1040841x.2016.1206060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ganesan Saibaba
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Kalapet, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, India
| |
Collapse
|
11
|
Reddy Tadi SR, E. V. R. A, Limaye AM, Sivaprakasam S. Enhanced production of optically pure d
(-) lactic acid from nutritionally rich Borassus flabellifer
sugar and whey protein hydrolysate based-fermentation medium. Biotechnol Appl Biochem 2016; 64:279-289. [DOI: 10.1002/bab.1470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/11/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Subbi Rami Reddy Tadi
- BioPAT Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - Arun E. V. R.
- BioPAT Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - Anil Mukund Limaye
- BioPAT Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| |
Collapse
|
12
|
Sathiyanarayanan G, Yi DH, Bhatia SK, Kim JH, Seo HM, Kim YG, Park SH, Jeong D, Jung S, Jung JY, Lee YK, Yang YH. Exopolysaccharide from psychrotrophic Arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC Adv 2015. [DOI: 10.1039/c5ra14978a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exopolysaccharide from psychrotrophic Arctic glacier soil bacteriumFlavobacteriumsp. ASB 3-3.
Collapse
|