1
|
Barman D, Dkhar MS. Purification and characterization of moderately thermostable raw-starch digesting α-amylase from endophytic Streptomyces mobaraensis DB13 associated with Costus speciosus. J GEN APPL MICROBIOL 2024; 69:293-300. [PMID: 37635076 DOI: 10.2323/jgam.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Endophytic actinobacteria are known to produce various enzymes with potential industrial applications. Alpha-amylase is an important class of industrial enzyme with a multi-dimensional utility. The present experiment was designed to characterize a moderately thermostable α-amylase producing endophytic Streptomyces mobaraensis DB13 isolated from Costus speciosus (J. Koenig) Sm. The enzyme was purified using 60% ammonium sulphate precipitation, dialysis, and Sephadex G-100 column chromatography. Based on 12% SDS-PAGE, the molecular weight of the purified α-amylase was estimated to be 55 kDa. The maximum α-amylase activity was achieved at pH 7.0, 50°C and it retained 80% of its activity at both pH 7.0 and 8.0 after incubation for 2 h. The α-mylase activity is strongly enhanced by Ca2+, Mg2+, and inhibited by Ba2+. The activity remains stable in the presence of Tween-80, SDS, PMSF, and Triton X-100; however, β-mercaptoethanol, EDTA, and H2O2 reduced the activity. The kinetic parameters Km and Vmax values for this α-amylase were calculated as 2.53 mM and 29.42 U/mL respectively. The α-amylase had the ability to digest various raw starches at a concentration of 10 mg/mL at pH 7.0, 50°C, where maize and rice are the preferred substrates. The digestion starts after 4 h of incubation, which reaches maximum after 48 h of incubation. These results suggest that S. mobaraensis DB13 is a potential source of moderately thermostable α-amylase enzyme, that effciently hydrolyzes raw starch. It suggesting that this α-amylase is a promising candidate to be use for industrial purposes.
Collapse
Affiliation(s)
- Dina Barman
- Microbial Ecology Laboratory, Centre for Advanced Studies in Botany, Department of Botany
- Department of Microbiology, The Assam Royal Global University
| | - Mamtaj S Dkhar
- Microbial Ecology Laboratory, Centre for Advanced Studies in Botany, Department of Botany
| |
Collapse
|
2
|
Balakrishnan M, Jeevarathinam G, Kumar SKS, Muniraj I, Uthandi S. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes. BMC Biotechnol 2021; 21:33. [PMID: 33947396 PMCID: PMC8094467 DOI: 10.1186/s12896-021-00686-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Background Amylases produced by fungi during solid-state fermentation are the most widely used commercial enzymes to meet the ever-increasing demands of the global enzyme market. The use of low-cost substrates to curtail the production cost and reuse solid wastes are seen as viable options for the commercial production of many enzymes. Applications of α-amylases in food, feed, and industrial sectors have increased over the years. Additionally, the demand for processed and ready-to-eat food has increased because of the rapid growth of food-processing industries in developing economies. These factors significantly contribute to the global enzyme market. It is estimated that by the end of 2024, the global α-amylase market would reach USD 320.1 million (Grand View Research Inc., 2016). We produced α-amylase using Aspergillus oryzae and low-cost substrates obtained from edible oil cake, such as groundnut oil cake (GOC), coconut oil cake (COC), sesame oil cake (SOC) by solid-state fermentation. We cultivated the fungus using these nutrient-rich substrates to produce the enzyme. The enzyme was extracted, partially purified, and tested for pH and temperature stability. The effect of pH, incubation period and temperature on α-amylase production using A. oryzae was optimized. Box–Behnken design (BBD) of response surface methodology (RSM) was used to optimize and determine the effects of all process parameters on α-amylase production. The overall cost economics of α-amylase production using a pilot-scale fermenter was also studied. Results The substrate optimization for α-amylase production by the Box–Behnken design of RSM showed GOC as the most suitable substrate for A. oryzae, as evident from its maximum α-amylase production of 9868.12 U/gds. Further optimization of process parameters showed that the initial moisture content of 64%, pH of 4.5, incubation period of 108 h, and temperature of 32.5 °C are optimum conditions for α-amylase production. The production increased by 11.4% (10,994.74 U/gds) by up-scaling and using optimized conditions in a pilot-scale fermenter. The partially purified α-amylase exhibited maximum stability at a pH of 6.0 and a temperature of 55 °C. The overall cost economic studies showed that the partially purified α-amylase could be produced at the rate of Rs. 622/L. Conclusions The process parameters for enhanced α-amylase secretion were analyzed using 3D contour plots by RSM, which showed that contour lines were more oriented toward incubation temperature and pH, having a significant effect (p < 0.05) on the α-amylase activity. The optimized parameters were subsequently employed in a 600 L-pilot-scale fermenter for the α-amylase production. The substrates were rich in nutrients, and supplementation of nutrients was not required. Thus, we have suggested an economically viable process of α-amylase production using a pilot-scale fermenter.
Collapse
Affiliation(s)
- M Balakrishnan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| | - G Jeevarathinam
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - S Kiran Santhosh Kumar
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Iniyakumar Muniraj
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| |
Collapse
|
3
|
Xu Y, Zhou T, Tang H, Li X, Chen Y, Zhang L, Zhang J. Probiotic potential and amylolytic properties of lactic acid bacteria isolated from Chinese fermented cereal foods. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Tang S, Xu T, Peng J, Zhou K, Zhu Y, Zhou W, Cheng H, Zhou H. Overexpression of an endogenous raw starch digesting mesophilic α-amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3013-3023. [PMID: 32056215 DOI: 10.1002/jsfa.10332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Mesophilic α-amylases function effectively at low temperatures with high rates of catalysis and require less energy for starch hydrolysis. Bacillus amyloliquefaciens is an essential producer of mesophilic α-amylases. However, because of the existence of the restriction-modification system, introducing exogenous DNAs into wild-type B. amyloliquefaciens is especially tricky. RESULTS α-Amylase producer B. amyloliquefaciens strain Z3 was screened and used as host for endogenous α-amylase gene expression. In vitro methylation was performed in recombinant plasmid pWB980-amyZ3. With the in vitro methylation, the transformation efficiency was increased to 0.96 × 102 colony-forming units μg-1 plasmid DNA. A positive transformant BAZ3-16 with the highest α-amylase secreting capacity was chosen for further experiments. The α-amylase activity of strain BAZ3-16 reached 288.70 ± 16.15 U mL-1 in the flask and 386.03 ± 16.25 U mL-1 in the 5-L stirred-tank fermenter, respectively. The Bacillus amyloliquefaciens Z3 expression system shows excellent genetic stability and high-level extracellular production of the target protein. Moreover, the synergistic interaction of AmyZ3 with amyloglucosidase was determined during the hydrolysis of raw starch. The hydrolysis degree reached 92.34 ± 3.41% for 100 g L-1 raw corn starch and 81.30 ± 2.92% for 100 g L-1 raw cassava starch after 24 h, respectively. CONCLUSION Methylation of the plasmid DNA removes a substantial barrier for transformation of B. amyloliquefaciens strain Z3. Furthermore, the exceptional ability to hydrolyze starch makes α-amylase AmyZ3 and strain BAZ3-16 valuable in the starch industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shizhe Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Tingliang Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jing Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Kaiyan Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yuling Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wenbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
5
|
Pranay K, Padmadeo SR, Prasad B. Production of amylase from Bacillus subtilis sp. strain KR1 under solid state fermentation on different agrowastes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Božić N, Lončar N, Slavić MŠ, Vujčić Z. Raw starch degrading α-amylases: an unsolved riddle. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/amylase-2017-0002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStarch is an important food ingredient and a substrate for the production of many industrial products. Biological and industrial processes involve hydrolysis of raw starch, such as digestion by humans and animals, starch metabolism in plants, and industrial starch conversion for obtaining glucose, fructose and maltose syrup or bioethanol. Raw starch degrading α-amylases (RSDA) can directly degrade raw starch below the gelatinization temperature of starch. Knowledge of the structures and properties of starch and RSDA has increased significantly in recent years. Understanding the relationships between structural peculiarities and properties of RSDA is a prerequisite for efficient application in different aspects of human benefit from health to the industry. This review summarizes recent advances on RSDA research with emphasizes on representatives of glycoside hydrolase family GH13. Definite understanding of raw starch digesting ability is yet to come with accumulating structural and functional studies of RSDA.
Collapse
|
7
|
Lee HW, Jeon HY, Choi HJ, Kim NR, Choung WJ, Koo YS, Ko DS, You S, Shim JH. Characterization and Application of BiLA, a Psychrophilic α-Amylase from Bifidobacterium longum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2709-2718. [PMID: 26979859 DOI: 10.1021/acs.jafc.5b05904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, a novel α-amylase was cloned from Bifidobacterium longum and named BiLA. The enzyme exhibited optimal activity at 20 °C and a pH value of 5.0. Kinetic analysis using various carbohydrate substrates revealed that BiLA had the highest k(cat/)K(m) value for amylose. Interestingly, analysis of the enzymatic reaction products demonstrated that BiLA specifically catalyzed the hydrolysis of oligosaccharides and starches up to G5 from the nonreducing ends. To determine whether BiLA can be used to generate slowly digestible starch (SDS), starch was treated with BiLA, and the kinetic parameters were analyzed using porcine pancreatic α-amylase (PPA) and amyloglucosidase (AMG). Compared to normal starch, BiLA-treated starch showed lower k(cat)/K(m) values with PPA and AMG, suggesting that BiLA is a potential candidate for the production of SDS.
Collapse
Affiliation(s)
- Hye-Won Lee
- Department of Food Science and Nutrition and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gangwon-do 200-702, South Korea
| | - Hye-Yeon Jeon
- Department of Food Science and Nutrition and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gangwon-do 200-702, South Korea
| | - Hye-Jeong Choi
- Department of Food Science and Nutrition and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gangwon-do 200-702, South Korea
| | - Na-Ri Kim
- Department of Food Science and Nutrition and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gangwon-do 200-702, South Korea
| | - Woo-Jae Choung
- Department of Food Science and Nutrition and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gangwon-do 200-702, South Korea
| | - Ye-Seul Koo
- Department of Food Science and Nutrition and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gangwon-do 200-702, South Korea
| | - Dam-Seul Ko
- Department of Food Science and Nutrition and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gangwon-do 200-702, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University , 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition and Center for Aging and Health Care, Hallym University , Hallymdaehak-gil 1, Chuncheon, Gangwon-do 200-702, South Korea
| |
Collapse
|