1
|
Enhanced production of ε-poly-L-lysine by immobilized Streptomyces ahygroscopicus through repeated-batch or fed-batch fermentation with in situ product removal. Bioprocess Biosyst Eng 2021; 44:2109-2120. [PMID: 34047828 DOI: 10.1007/s00449-021-02587-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/12/2021] [Indexed: 12/29/2022]
Abstract
ε-Poly-L-lysine (ε-PL) is a naturally-occurring L-lysine homopolymer having a broad-spectrum antimicrobial activity and used widely as a food preservative. In the present study, the combined use of immobilization and in situ product removal (ISPR) was evaluated for the production of ε-PL by Streptomyces ahygroscopicus GIM8. Results showed that ε-PL production in the flask cultures decreased from 0.84 to 0.38-0.56 g/L upon immobilization on loofah sponge with different amounts (0.5-3 g in 50 mL medium in a flask). By applying continuous ISPR to the immobilized flask cultures, ε-PL production as high as 3.51 g/L was obtained compared to 0.51 g/L of the control. A satisfactory titer of 1.84 g/L ε-PL could also be achieved with intermittent ISRP (three cycles of ISPR operation during cultivation). Further investigation showed that low levels of ε-PL retained in the broth appeared to favor its biosynthesis. In the repeated-batch fermentation in a 5 L immobilized bioreactor, with continuous ISPR, the final average ε-PL concentration and productivity were 3.35 g/L and 0.797 g/L/day, respectively, and 3.18 g/L and 0.756 g/L/day for the alternative (intermittent ISPR), in comparison to 1.16 g/L and 0.277 g/L/day with no ISPR usage. In the fed-batch fermentation with immobilized cells, the combined use of intermittent ISPR and extra nutrient feeding increased ε-PL concentration and productivity up to 24.57 g/L and 9.34 g/L/day. The fermentation processes developed could serve as an effective approach for ε-PL production and, moreover, the combination could greatly simplify downstream processing for ε-PL separation and purification.
Collapse
|
2
|
Kim T, Kang S, Park J, Oh D. Construction of an engineered biocatalyst system for the production of medium‐chain α,ω‐dicarboxylic acids from medium‐chain ω‐hydroxycarboxylic acids. Biotechnol Bioeng 2020; 117:2648-2657. [DOI: 10.1002/bit.27433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Tae‐Hun Kim
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| | - Su‐Hwan Kang
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science and EngineeringEwha Womans University Seoul Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| |
Collapse
|
3
|
Odinot E, Fine F, Sigoillot JC, Navarro D, Laguna O, Bisotto A, Peyronnet C, Ginies C, Lecomte J, Faulds CB, Lomascolo A. A Two-Step Bioconversion Process for Canolol Production from Rapeseed Meal Combining an Aspergillus niger Feruloyl Esterase and the Fungus Neolentinus lepideus. Microorganisms 2017; 5:microorganisms5040067. [PMID: 29036919 PMCID: PMC5748576 DOI: 10.3390/microorganisms5040067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 11/24/2022] Open
Abstract
Rapeseed meal is a cheap and abundant raw material, particularly rich in phenolic compounds of biotechnological interest. In this study, we developed a two-step bioconversion process of naturally occurring sinapic acid (4-hydroxy-3,5-dimethoxycinnamic acid) from rapeseed meal into canolol by combining the complementary potentialities of two filamentous fungi, the micromycete Aspergillus niger and the basidiomycete Neolentinus lepideus. Canolol could display numerous industrial applications because of its high antioxidant, antimutagenic and anticarcinogenic properties. In the first step of the process, the use of the enzyme feruloyl esterase type-A (named AnFaeA) produced with the recombinant strain A. niger BRFM451 made it possible to release free sinapic acid from the raw meal by hydrolysing the conjugated forms of sinapic acid in the meal (mainly sinapine and glucopyranosyl sinapate). An amount of 39 nkat AnFaeA per gram of raw meal, at 55 °C and pH 5, led to the recovery of 6.6 to 7.4 mg of free sinapic acid per gram raw meal, which corresponded to a global hydrolysis yield of 68 to 76% and a 100% hydrolysis of sinapine. Then, the XAD2 adsorbent (a styrene and divinylbenzene copolymer resin), used at pH 4, enabled the efficient recovery of the released sinapic acid, and its concentration after elution with ethanol. In the second step, 3-day-old submerged cultures of the strain N. lepideus BRFM15 were supplied with the recovered sinapic acid as the substrate of bioconversion into canolol by a non-oxidative decarboxylation pathway. Canolol production reached 1.3 g/L with a molar yield of bioconversion of 80% and a productivity of 100 mg/L day. The same XAD2 resin, when used at pH 7, allowed the recovery and purification of canolol from the culture broth of N. lepideus. The two-step process used mild conditions compatible with green chemistry.
Collapse
Affiliation(s)
- Elise Odinot
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Frédéric Fine
- Terres Inovia, Parc Industriel, 11 Rue Monge, 33600 Pessac, France.
| | - Jean-Claude Sigoillot
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - David Navarro
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
- Centre International de Ressources Microbiennes, Champignons Filamenteux, CIRM-CF, Case 925, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Oscar Laguna
- CIRAD Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR IATE Montpellier SupAgro-INRA, 2, Place Pierre Viala, 34060 Montpellier, France.
| | - Alexandra Bisotto
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Corinne Peyronnet
- Terres Univia, 11 rue Monceau, CS60003, 75378 Paris CEDEX 8, France.
| | - Christian Ginies
- Sécurité et Qualité des Produits d'Origine Végétale, INRA Institut National de la Recherche Agronomique UMR408 SQPOV, Université d'Avignon, 33 rue Louis Pasteur, 84029 Avignon, France.
| | - Jérôme Lecomte
- CIRAD Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR IATE Montpellier SupAgro-INRA, 2, Place Pierre Viala, 34060 Montpellier, France.
| | - Craig B Faulds
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Anne Lomascolo
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| |
Collapse
|