1
|
Laksmi FA, Rahayuningsih M, Amalia AR, Violando WA, Nuryana I, Ertanto Y, Nugraha Y. One-step rapid production of DNA polymerase from Pyrococcus furiosus in Escherichia coli system under optimized culture conditions. Prep Biochem Biotechnol 2025:1-9. [PMID: 40243776 DOI: 10.1080/10826068.2025.2483238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The Pyrococcus furiosus (Pfu) DNA polymerase is an enzyme widely used in PCR due to its high fidelity, thermal stability, and ability to amplify even minute amounts of DNA with exceptional specificity and sensitivity. This study addresses the growing demand for efficient and cost-effective production of Pfu polymerase by optimizing its recombinant expression in Escherichia coli BL21 star (DE3) using a synthetic gene in the pD451-SR plasmid. Key parameters, including IPTG concentration (0.4 mM), post-induction incubation time (12 h), and cell density prior to induction (OD600 of 0.4), were systematically optimized to maximize yield and activity. A rapid and straightforward purification protocol was developed, utilizing a boiling-mediated lysis method that effectively purified Pfu polymerase within 20 minutes. A total of 795 mg/L of pure Pfu polymerase under optimized conditions, led to a 30-fold increase in protein yield with an enzyme activity of 2210 units, with SDS-PAGE and western blot analyses confirming a single protein band at 90 kDa. The optimized production and purification methods significantly enhance the time and cost-efficiency of Pfu polymerase production, making it highly suitable for industrial-scale applications. This streamlined approach positions Pfu polymerase as a valuable tool for routine PCR, cloning, mutagenesis, and advanced applications.
Collapse
Affiliation(s)
- Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency, West Java, Indonesia
| | | | - Arfena Rizqi Amalia
- Research Center for Applied Microbiology, National Research and Innovation Agency, West Java, Indonesia
- Faculty of Science and Technology, Sunan Kalijaga State Islamic University, Yogyakarta, Indonesia
| | - Wiga Alif Violando
- Department of Marine, Sunan Ampel State Islamic University, Surabaya, Indonesia
| | - Isa Nuryana
- Research Center for Applied Microbiology, National Research and Innovation Agency, West Java, Indonesia
| | - Yogi Ertanto
- Army Medical Center, Indonesia, Jakarta, Indonesia
- Faculty of Military Pharmacy, Universitas Pertahanan Republik Indonesia, Bogor, West Java, Indonesia
| | - Yudhi Nugraha
- Research Center for Molecular Biology Eijkman, National Research and Innovation Agency, West Java, Indonesia
| |
Collapse
|
2
|
Liu S, Xiao F, Li Y, Zhang Y, Wang Y, Shi G. Establishment of the CRISPR-Cpf1 gene editing system in Bacillus licheniformis and multiplexed gene knockout. Synth Syst Biotechnol 2024; 10:39-48. [PMID: 39224148 PMCID: PMC11366866 DOI: 10.1016/j.synbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Bacillus licheniformis is a significant industrial microorganism. Traditional gene editing techniques relying on homologous recombination often exhibit low efficiency due to their reliance on resistance genes. Additionally, the established CRISPR gene editing technology, utilizing Cas9 endonuclease, faces challenges in achieving simultaneous knockout of multiple genes. To address this limitation, the CRISPR-Cpf1 system has been developed, enabling multiplexed gene editing across various microorganisms. Key to the efficient gene editing capability of this system is the rigorous screening of highly effective expression elements to achieve conditional expression of protein Cpf1. In this study, we employed mCherry as a reporter gene and harnessed P mal for regulating the expression of Cpf1 to establish the CRISPR-Cpf1 gene editing system in Bacillus licheniformis. Our system achieved a 100 % knockout efficiency for the single gene vpr and up to 80 % for simultaneous knockout of the double genes epr and mpr. Furthermore, the culture of a series of protease-deficient strains revealed that the protease encoded by aprE contributed significantly to extracellular enzyme activity (approximately 80 %), whereas proteases encoded by vpr, epr, and mpr genes contributed to a smaller proportion of extracellular enzyme activity. These findings provide support for effective molecular modification and metabolic regulation in industrial organisms.
Collapse
Affiliation(s)
- Suxin Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yanling Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| |
Collapse
|
3
|
Naveed M, Wen S, Chan MWH, Wang F, Aslam S, Yin X, Xu B, Ullah A. Expression of BSN314 lysozyme genes in Escherichia coli BL21: a study to demonstrate microbicidal and disintegarting potential of the cloned lysozyme. Braz J Microbiol 2024; 55:215-233. [PMID: 38146050 PMCID: PMC10920529 DOI: 10.1007/s42770-023-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023] Open
Abstract
This study is an extension of our previous studies in which the lysozyme was isolated and purified from Bacillus subtilis BSN314 (Naveed et al., 2022; Naveed et al., 2023). In this study, the lysozyme genes were cloned into the E. coli BL21. For the expression of lysozyme in E. coli BL21, two target genes, Lyz-1 and Lyz-2, were ligated into the modified vector pET28a to generate pET28a-Lyz1 and pET28a-Lyz2, respectively. To increase the production rate of the enzyme, 0.5-mM concentration of IPTG was added to the culture media and incubated at 37 °C and 220 rpm for 24 h. Lyz1 was identified as N-acetylmuramoyl-L-alanine amidase and Lyz2 as D-alanyl-D-alanine carboxypeptidase. They were purified by multi-step methodology (ammonium sulfate, precipitation, dialysis, and ultrafiltration), and antimicrobial activity was determined. For Lyz1, the lowest MIC/MBC (0.25 μg/mL; with highest ZOI = 22 mm) were recorded against Micrococcus luteus, whereas the highest MIC/MBC with lowest ZOI were measured against Salmonella typhimurium (2.50 μg /mL; with ZOI = 10 mm). As compared with Aspergillus oryzae (MIC/MFC; 3.00 μg/mL), a higher concentration of lysozyme was required to control the growth of Saccharomyces cerevisiae (MIC/MFC; 50 μg/mL). Atomic force microscopy (AFM) was used to analyze the disintegrating effect of Lyz1 on the cells of selected Gram-positive bacteria, Gram-negative bacteria, and yeast. The AFM results showed that, as compared to Gram-negative bacteria, a lower concentration of lysozyme (Lyz1) was required to disintegrate the cell of Gram-positive bacteria.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Sai Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Malik Wajid Hussain Chan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sadar Aslam
- Department of Zoology, University of Baltistan, Skardu, Pakistan
| | - Xian Yin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Baocai Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Asad Ullah
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, 75280, Pakistan
| |
Collapse
|
4
|
Nuryana I, Laksmi FA, Dewi KS, Akbar FR, Nurhayati, Harmoko R. Codon optimization of a gene encoding DNA polymerase from Pyrococcus furiosus and its expression in Escherichia coli. J Genet Eng Biotechnol 2023; 21:129. [PMID: 37987973 PMCID: PMC10663413 DOI: 10.1186/s43141-023-00605-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND DNA polymerase is an essential component in PCR assay for DNA synthesis. Improving DNA polymerase with characteristics indispensable for a powerful assay is crucial because it can be used in wide-range applications. Derived from Pyrococcus furiosus, Pfu DNA polymerase (Pfu pol) is one of the excellent polymerases due to its high fidelity. Therefore, we aimed to develop Pfu pol from a synthetic gene with codon optimization to increase its protein yield in Escherichia coli. RESULTS Recombinant Pfu pol was successfully expressed and purified with a two-step purification process using nickel affinity chromatography, followed by anion exchange chromatography. Subsequently, the purified Pfu pol was confirmed by Western blot analysis, resulting in a molecular weight of approximately 90 kDa. In the final purification process, we successfully obtained a large amount of purified enzyme (26.8 mg/L). Furthermore, the purified Pfu pol showed its functionality and efficiency when tested for DNA amplification using the standard PCR. CONCLUSIONS Overall, a high-level expression of recombinant Pfu pol was achieved by employing our approach in the present study. In the future, our findings will be useful for studies on synthesizing recombinant DNA polymerase in E. coli expression system.
Collapse
Affiliation(s)
- Isa Nuryana
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia.
| | - Kartika Sari Dewi
- Research Center for Genetic Engineering, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Faiz Raihan Akbar
- Department of Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Jalan Prof Soedarto, SH, Kampus UNDIP Tembalang, Semarang, 50275, Indonesia
| | - Nurhayati
- Department of Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Jalan Prof Soedarto, SH, Kampus UNDIP Tembalang, Semarang, 50275, Indonesia
| | - Rikno Harmoko
- Research Center for Genetic Engineering, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| |
Collapse
|
5
|
Sun P, Li C, Gong Y, Wang J, Xu Q. Process study of ceramic membrane-coupled mixed-cell fermentation for the production of adenine. Front Bioeng Biotechnol 2022; 10:969668. [PMID: 36032726 PMCID: PMC9399796 DOI: 10.3389/fbioe.2022.969668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
In order to solve the problems of high complexity, many by-products, high pollution and difficult extraction of the existing adenine production process, in this study, ceramic membrane-coupled mixed cell fermentation was used to produce adenine while reducing the synthesis of by-products and simplifying the production process of adenine. Nucleoside hydrolase (encoded by the rihC gene) was used to produce adenine by coordinated fermentation with the adenosine-producing bacterium Bacillus Subtilis XGL. The adenosine hydrolase (AdHy)-expressing strain Escherichia coli BL21-AdHy was successfully employed and the highest activity of the crude enzyme solution was found by orthogonal experiments at 170 W power, 42% duty cycle, and 8 min of sonication. The highest AdHy activity was found after 18 h of induction incubation. E. coli BL21-AdHy was induced for 18 h and sonicated under the above ultrasonic conditions and the resulting crude enzyme solution was used for co-fermentation of the strain and enzyme. Moreover, 15% (v/v) of the AdHy crude enzyme solution was added to fermentation of B. subtilis XGL after 35 h. Finally, the whole fermentation system was dialyzed using coupled ceramic membranes for 45 and 75 h, followed by the addition of fresh medium. In contrast, the AdHy crude enzyme solution was added after 35, 65, and 90 h of B. subtilis fermentation, with three additions of 15, 15, and 10% of the B. subtilis XGL fermentation system. The process was validated in a 5 L fermenter and 14 ± 0.25 g/L of adenine was obtained, with no accumulation of adenosine and d-ribose as by-products. The enzymatic activity of the AdHy crude solution treated with ultrasound was greatly improved. It also reduced the cellular activity of E. coli BL21-AdHy and reduced effects on bacterial co-fermentation. Membrane-coupled dialysis solved the problem of decreased yield due to poor bacterial survival and decreased viability, and eliminated inhibition of the product synthesis pathway by adenosine. The batch addition of crude enzyme broth allowed the continuous conversion of adenosine to adenine. This production method provides the highest yield of biologically produced adenine reported to date, reduces the cost of adenine production, and has positive implications for the industrial production of adenine by fermentation. And it provides a reference for producing other high-value-added products made by fermentation.
Collapse
Affiliation(s)
- Pengjie Sun
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Changgeng Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Gong
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jinduo Wang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Qingyang Xu,
| |
Collapse
|
6
|
Sathesh-Prabu C, Ryu YS, Lee SK. Levulinic Acid-Inducible and Tunable Gene Expression System for Methylorubrum extorquens. Front Bioeng Biotechnol 2022; 9:797020. [PMID: 34976985 PMCID: PMC8714952 DOI: 10.3389/fbioe.2021.797020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Methylorubrum extorquens AM1 is an efficient platform strain possessing biotechnological potential in formate- and methanol-based single carbon (C1) bioeconomy. Constitutive expression or costly chemical-inducible expression systems are not always desirable. Here, several glucose-, xylose-, and levulinic acid (LA)-inducible promoter systems were assessed for the induction of green fluorescent protein (GFP) as a reporter protein. Among them, the LA-inducible gene expression system (HpdR/P hpdH ) showed a strong expression of GFP (51-fold) compared to the control. The system was induced even at a low concentration of LA (0.1 mM). The fluorescence intensity increased with increasing concentrations of LA up to 20 mM. The system was tunable and tightly controlled with meager basal expression. The maximum GFP yield obtained using the system was 42 mg/g biomass, representing 10% of the total protein content. The efficiency of the proposed system was nearly equivalent (90%-100%) to that of the widely used strong promoters such as P mxaF and P L/O4 . The HpdR/P hpdH system worked equally efficiently in five different strains of M. extorquens. LA is a low-cost, renewable, and sustainable platform chemical that can be used to generate a wide range of products. Hence, the reported system in potent strains of M. extorquens is highly beneficial in the C1-biorefinery industry to produce value-added products and bulk chemicals.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Young Shin Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
7
|
Identification of Optimal Expression Parameters and Purification of a Codon-Optimized Human GLIS1 Transcription Factor from Escherichia coli. Mol Biotechnol 2021; 64:42-56. [PMID: 34528219 DOI: 10.1007/s12033-021-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.
Collapse
|
8
|
Dlamini B, Rangarajan V, Clarke KG. A simple thin layer chromatography based method for the quantitative analysis of biosurfactant surfactin vis-a-vis the presence of lipid and protein impurities in the processing liquid. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Yamashita M, Xu J, Morokuma D, Hirata K, Hino M, Mon H, Takahashi M, Hamdan SM, Sakashita K, Iiyama K, Banno Y, Kusakabe T, Lee JM. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System. Mol Biotechnol 2018; 59:221-233. [PMID: 28484957 DOI: 10.1007/s12033-017-0008-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.
Collapse
Affiliation(s)
- Mami Yamashita
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan.
| | - Daisuke Morokuma
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Kazuma Hirata
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Masato Hino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST Thuwal, Jeddah, 23955, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST Thuwal, Jeddah, 23955, Saudi Arabia
| | - Kosuke Sakashita
- Bioscience Core Lab, Proteomics, King Abdullah University of Science and Technology, 4700 KAUST Thuwal, Jeddah, 23955, Saudi Arabia
| | - Kazuhiro Iiyama
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yutaka Banno
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki Higashi-ku, Fukuoka, 812-8581, Japan.
| |
Collapse
|
10
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018; 106:803-822. [DOI: 10.1016/j.ijbiomac.2017.08.080] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/29/2022]
|
11
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2017.08.080 10.1242/jeb.069716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Optimized expression conditions for enhancing production of two recombinant chitinolytic enzymes from different prokaryote domains. Bioprocess Biosyst Eng 2016; 38:2477-86. [PMID: 26470707 DOI: 10.1007/s00449-015-1485-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Enhancing functional gene expression is key to high-level production of active chitinases. For this purpose, the effects of culture cell density, inducer concentration, post-induction time and induction temperatures on the functional expression of two different chitinases (HsChiA1p, a family 18 archaeal chitinase and PtChi19p, a family 19 bacterial chitinase) were comparatively investigated. Results showed that the effect of each parameter on the activity of both chitinases was specific to each enzyme. In addition, different Escherichia coli host strains compatible with the expression in pET systems were assayed for active protein overexpression. When using BL21 Star (DE3), a significant increase of 60% in expression was observed for the active archaeal chitinase HsChiA1p as compared to that found when using BL21 (DE3), indicating that the rne131 gene mutation efficiently stabilizes the mRNA for HsChiA1p. Using the Codon Adaptation Index value, rare codon analysis of the archaeal HschiA1 and bacterial Ptchi19 genes revealed that both DNA sequences were not optimal for maximal expression in E. coli. Different E. coli host strains possess extra copies of some of the tRNA genes for rare codons. For the Rosetta 2 (DE3) and the BL21 RP (DE3) strains, a significant increase of 40% was reached for the activity of HsChiA1p and PtChi19p. Finally, as part of the protein still remained insoluble, the best conditions for recovering biologically active protein from inclusion bodies were established for each enzyme.
Collapse
|
13
|
Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli. Protein J 2016; 35:145-53. [PMID: 26920159 DOI: 10.1007/s10930-016-9651-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future.
Collapse
|