1
|
Tang W, Huang C, Tang Z, He YC. Employing deep eutectic solvent synthesized by cetyltrimethylammonium bromide and ethylene glycol to advance enzymatic hydrolysis efficiency of rape straw. BIORESOURCE TECHNOLOGY 2023; 387:129598. [PMID: 37532057 DOI: 10.1016/j.biortech.2023.129598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
An efficient deep eutectic solvent (DES) was synthesized by cetyltrimethylammonium bromide (CTAB) and ethylene glycol (EG) and employed to treat rape straw (RS) for advancing enzymatic saccharification in this work. By optimizing the pretreatment parameters, the results displayed that the novel DES was strongly selective towards removing lignin and xylan while preserving cellulose. Under optimum conditions with 1:6 of CTAB: EG in DES, 180 °C and 80 min, the enzymatic hydrolysis efficiency of RS was enhanced by 46.0% due to the 62.2% of delignification and 53.2% of xylan removal during CTAB: EG pretreatment. In terms of the recalcitrant structure of RS, DES pretreatment caused the increment of cellulosic accessibility, reduction of hydrophobicity and surface area of lignin, and migration of cellulosic crystalline structure, which was associated with its enzymatic hydrolysis efficiency. Overall, this study presented an emerging method for the effective fractionation and valorization of lignocellulosic biomass within biorefinery technology.
Collapse
Affiliation(s)
- Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|
2
|
Li L, Liu C, Qu M, Zhang W, Pan K, OuYang K, Song X, Zhao X. Characteristics of a recombinant Lentinula edodes endoglucanase and its potential for application in silage of rape straw. Int J Biol Macromol 2019; 139:49-56. [PMID: 31374269 DOI: 10.1016/j.ijbiomac.2019.07.199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
An experiment was conducted to determine the characteristics of recombinant endoglucanase and its effects on rape straw silage. The endoglucanase from Lentinula edodes (LeCel12A) was produced in Pichia pastoris and shown maximum activity at 40 °C and pH 3.0. The LeCel12A exhibited preferential hydrolysis of carboxymethylcellulose. The activity of LeCel12A could be enhanced by MnCl2 in dose-dependent manners. Trp22 was a key amino acid affecting LeCel12A activity. The LeCel12A enhanced the hydrolysis of rape straw, rice straw, wheat straw, and corn straw. Supplemental LeCel12A increased lactic acid concentration and reduced lignocellulosic content of the rape straw silage. Though an increase in the saccharification efficiency of LeCel12A-treated rape straw silage was observed when the fibrolytic enzyme loading of hydrolysis system was enough, supplemental LeCel12A did not dramatically enhance the saccharification of rape straw silage in the current study. This study demonstrates that LeCel12A may be useful for improving the utilization of rape straw silage as an additive, but its supplemental dose, cost benefit, and consequent application possibility in biofuel production require careful consideration and further investigation.
Collapse
Affiliation(s)
- Lizhi Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Life science and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Wenjing Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Kehui OuYang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
3
|
Tian JH, Pourcher AM, Bize A, Wazeri A, Peu P. Impact of wet aerobic pretreatments on cellulose accessibility and bacterial communities in rape straw. BIORESOURCE TECHNOLOGY 2017; 237:31-38. [PMID: 28411050 DOI: 10.1016/j.biortech.2017.03.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
A new pretreatment method of lignocellulosic biomass was explored by using a wet aerobic process with an alkaline lignin and a mineral salt solution. This treatment significantly improved structural modification of rape straw used as substrate model in this study. Change in cellulose accessibility to cellulase of rape straw rose up to six fold within the first days of this pretreatment without generated significant modification of van Soest lignocellulose fractionation. The biological pretreatment apply to rape straw induced a high microbial activity revealed by quantitative PCR and sequencing techniques, suggesting that bacteria including Xanthomonadales and Sphingobacteriales may be involved in this lignocellulosic biomass transformation. Moreover, results of this work demonstrate that the endogenous microbial community associated with rape straw plays a key role in its alteration.
Collapse
Affiliation(s)
- Jiang-Hao Tian
- IRSTEA, UR OPAALE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Bretagne Loire, France
| | - Anne-Marie Pourcher
- IRSTEA, UR OPAALE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Bretagne Loire, France
| | - Ariane Bize
- IRSTEA, Hydrosystems and Bioprocesses Research Unit, 1 rue Pierre-Gilles de Gennes, CS 10030, F-92761 Antony, France
| | - Alaa Wazeri
- Egypt-Japan University of Science and Technology (E-JUST), Environmental Engineering Department, P.O. Box 179, New Borg El-Arab City 21934, Alexandria, Egypt
| | - Pascal Peu
- IRSTEA, UR OPAALE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Bretagne Loire, France.
| |
Collapse
|
4
|
Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Curr Opin Biotechnol 2016; 38:39-46. [PMID: 26780496 DOI: 10.1016/j.copbio.2015.12.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 11/24/2022]
Abstract
Recent techno-economic studies of proposed lignocellulosic biorefineries have concluded that creating value from lignin will assist realization of biomass utilization into valuable fuels, chemicals, and materials due to co-valorization and the new revenues beyond carbohydrates. The pretreatment step within a biorefinery process is essential for recovering carbohydrates, but different techniques and intensities have a variety of effects on lignin. Acidic and alkaline pretreatments have been shown to produce diverse lignins based on delignification chemistry. The valorization potential of pretreated lignin is affected by its chemical structure, which is known to degrade, including inter-lignin condensation under high-severity pretreatment. Co-valorization of lignin and carbohydrates will require dampening of pretreatment intensities to avoid such effects, in spite of tradeoffs in carbohydrate production.
Collapse
|