1
|
Zhao S, Yun H, Khan A, Salama ES, Redina MM, Liu P, Li X. Two-stage microbial fuel cell (MFC) and membrane bioreactor (MBR) system for enhancing wastewater treatment and resource recovery based on MFC as a biosensor. ENVIRONMENTAL RESEARCH 2022; 204:112089. [PMID: 34571032 DOI: 10.1016/j.envres.2021.112089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Lack of process control between the two stages of a combined microbial fuel cell-membrane bioreactor (MFC-MBR) system limits its application in wastewater treatment due to membrane fouling and high energy consumption. In this study, a two-stage MFC-MBR integrated system was established to investigate the impact of incorporating process control on petroleum refinery wastewater treatment. The results showed that chemical oxygen demand (COD) removal exhibits a linear relationship with the MFC voltage output (R2 = 0.9821); therefore, the MFC was used as a biosensor to control the combined system. The removal efficiencies of COD, ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 96.3%, 92.4%, and 86.6%, respectively, in the MFC-MBR biosensor, whereas those in the control system were 74.7%, 71.2%, and 64.7% respectively. Furthermore,using the biosensor control system yielded a 50% reduction in the transmembrane pressure (1.01 kPa day-1) and decreased membrane fouling in wastewater treatment. The maximum energy recovery of the biosensor system (0.00258 kWh m-3) was five times higher than that of the control system, as determined by calculating the mass balance of the system. Thus, this study indicates that using the MFC as a biosensor for process control in an MFC-MBR system can improve overall system performance.
Collapse
Affiliation(s)
- Shuai Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - Hui Yun
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | | | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
2
|
Wang J, Zhao S, Kakade A, Kulshreshtha S, Liu P, Li X. A Review on Microbial Electrocatalysis Systems Coupled with Membrane Bioreactor to Improve Wastewater Treatment. Microorganisms 2019; 7:microorganisms7100372. [PMID: 31547014 PMCID: PMC6843282 DOI: 10.3390/microorganisms7100372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Microbial electrocatalysis is an electro reaction that uses microorganisms as a biocatalyst, mainly including microbial electrolytic cells (MEC) and microbial fuel cells (MFC), which has been used for wastewater treatment. However, the low processing efficiency is the main drawback for its practical application and the additional energy input of MEC system results in high costs. Recently, MFC/MEC coupled with other treatment processes, especially membrane bioreactors (MBR), has been used for high efficiency and low-cost wastewater treatment. In these systems, the wastewater treatment efficiency can be improved after two units are operated and the membrane fouling of MBR can also be alleviated by the electric energy that was generated in the MFC. In addition, the power output of MFC can also reduce the energy consumption of microbial electrocatalysis systems. This review summarizes the recent studies about microbial electrocatalysis systems coupled with MBR, describing the combination types and microorganism distribution, the advantages and limitations of the systems, and also addresses several suggestions for the future development and practical applications.
Collapse
Affiliation(s)
- Jicun Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou 730000, China.
| | - Shuai Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou 730000, China.
| | - Apurva Kakade
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India.
| | - Saurabh Kulshreshtha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India.
| | - Pu Liu
- Department of Developmental Biology, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, China.
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou 730000, China.
| |
Collapse
|
3
|
He Q, Xu XH, Zhang F, Tai YK, Luo YF, He J, Hong Q, Jiang JD, Yan X. Production of chlorothalonil hydrolytic dehalogenase from agro-industrial wastewater and its application in raw food cleaning. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2582-2587. [PMID: 27718236 DOI: 10.1002/jsfa.8079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND To reduce the fermentation cost for industrialization of chlorothalonil hydrolytic dehalogenase (Chd), agro-industrial wastewaters including molasses, corn steep liquor (CSL) and fermentation wastewater were used to substitute for expensive carbon and nitrogen sources and fresh water for lab preparation. RESULTS The results showed that molasses and CSL could replace 5% carbon source and 100% organic nitrogen source respectively to maintain the same fermentation level. Re-fermentation from raffinate of ultra-filtered fermentation wastewater could achieve 61.03% of initial Chd activity and reach 96.39% activity when cultured in a mixture of raffinate and 50% of original medium constituent. Typical raw foods were chosen to evaluate the chlorothalonil removal ability of Chd. After Chd treatment for 2 h at room temperature, 97.40 and 75.55% of 30 mg kg-1 chlorothalonil on cherry tomato and strawberry respectively and 60.29% of 50 mg kg-1 chlorothalonil on Chinese cabbage were removed. Furthermore, the residual activity of the enzyme remained at 78-82% after treatment, suggesting its potential for reuse. CONCLUSION This study proved the cost-feasibility of large-scale production of Chd from agro-industrial wastewater and demonstrated the potential of Chd in raw food cleaning. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qin He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi-Hui Xu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Kai Tai
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan-Fei Luo
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Li J, Luo S, He Z. Cathodic fluidized granular activated carbon assisted-membrane bioelectrochemical reactor for wastewater treatment. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Coupling microbial fuel cells with a membrane photobioreactor for wastewater treatment and bioenergy production. Bioprocess Biosyst Eng 2016; 39:1703-10. [DOI: 10.1007/s00449-016-1645-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/01/2022]
|
6
|
Li J, He Z. Development of a dynamic mathematical model for membrane bioelectrochemical reactors with different configurations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3897-3906. [PMID: 26499198 DOI: 10.1007/s11356-015-5611-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Membrane bioelectrochemical reactors (MBERs) integrate membrane filtration into bioelectrochemical systems for sustainable wastewater treatment and recovery of bioenergy and other resource. Mathematical models for MBERs will advance the understanding of this technology towards further development. In the present study, a mathematical model was implemented for predicting current generation, membrane fouling, and organic removal within MBERs. The relative root-mean-square error was used to examine the model fit to the experimental data. It was found that a constant to determine how fast the internal resistance responds to the change of the anodophillic microorganism concentration could have a dominant impact on current generation. Hydraulic cross-flow exhibited a minor effect on membrane fouling unless it was reduced below 0.5 m s(-1). This MBER model encourages further optimization and eventually can be used to guide MBER development.
Collapse
Affiliation(s)
- Jian Li
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.
| |
Collapse
|