1
|
Ning Y, Gu Q, Zheng T, Xu Y, Li S, Zhu Y, Hu B, Yu H, Liu X, Zhang Y, Jiao B, Lu X. Genome Mining Leads to Diverse Sesquiterpenes with Anti-inflammatory Activity from an Arctic-Derived Fungus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1426-1440. [PMID: 38690764 DOI: 10.1021/acs.jnatprod.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
With the advancement of bioinformatics, the integration of genome mining with efficient separation technology enables the discovery of a greater number of novel bioactive compounds. The deletion of the key gene responsible for triterpene cyclase biosynthesis in the polar strain Eutypella sp. D-1 instigated metabolic shunting, resulting in the activation of dormant genes and the subsequent production of detectable, new compounds. Fifteen sesquiterpenes were isolated from the mutant strain, with eight being new compounds. The structural elucidation of these compounds was obtained through a combination of HRESIMS, NMR spectroscopy, and ECD calculations, revealing six distinct skeleton types. Compound 7 possessed a unique skeleton of 5/10 macrocyclic ether structure. Based on the gene functions and newly acquired secondary metabolites, the metabolic shunting pathway in the mutant strain was inferred. Compounds 6, 8, 11, 14, and 15 exhibited anti-inflammatory effects without cytotoxicity through the release of nitric oxide from lipopolysaccharide-stimulated RAW264.7 cells. Notably, acorane-type sesquiterpene 8 inhibited nitric oxide production and modulated the MAPK and NLRP3/caspase-1 signaling pathways. Compound 8 also alleviated the CuSO4-induced systemic neurological inflammation symptoms in a transgenic fluorescent zebrafish model.
Collapse
Affiliation(s)
- Yaodong Ning
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Qinwufeng Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Te Zheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250000, People's Republic of China
| | - Yao Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Song Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Yuping Zhu
- College of Basic Medical Sciences, Experimental Teacher Center, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Haobing Yu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xiaoyu Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250000, People's Republic of China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
2
|
Ning Y, Zhang S, Zheng T, Xu Y, Li S, Zhang J, Jiao B, Zhang Y, Ma Z, Lu X. Pimarane-Type Diterpenes with Anti-Inflammatory Activity from Arctic-Derived Fungus Eutypella sp. D-1. Mar Drugs 2023; 21:541. [PMID: 37888476 PMCID: PMC10608715 DOI: 10.3390/md21100541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The Arctic-derived fungus Eutypella sp. D-1 can produce numerous secondary metabolites, and some compounds exhibit excellent biological activity. Seven pimarane-type diterpenes, including three new compounds eutypellenone F (1), libertellenone Y (2), and libertellenone Z (3), and four known compounds (4-7), were isolated from fermentation broth of Eutypella sp. D-1 by the OSMAC strategy of adding ethanol as a promoter in the culture medium. Compound 2 has a rare tetrahydrofuran-fused pimarane diterpene skeleton. The anti-inflammatory activity of all compounds was evaluated. Compounds 3-6 showed a significant inhibitory effect on cell NO release at 10 μmol/L by in vitro experiments, of which 3-5 had inhibitory rates over 60% on nitric oxide (NO) release. Subsequently, the anti-inflammatory activity of 3-5 was evaluated based on a zebrafish model, and the results showed that 3 had a significant inhibitory effect on inflammatory cells migration at 40 μmol/L, while 4 and 5 had a significant inhibitory effect at 20 μmol/L. Moreover, compounds 3-5 have the same conjugated double bond structure, which may be an important group for these compounds to exert anti-inflammatory activity.
Collapse
Affiliation(s)
- Yaodong Ning
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Shi Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China
| | - Te Zheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250000, China
| | - Yao Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Song Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Jianpeng Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250000, China
| | - Zengling Ma
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China
| | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Ning Y, Hu B, Yu H, Liu X, Jiao B, Lu X. Optimization of Protoplast Preparation and Establishment of Genetic Transformation System of an Arctic-Derived Fungus Eutypella sp. Front Microbiol 2022; 13:769008. [PMID: 35464961 PMCID: PMC9019751 DOI: 10.3389/fmicb.2022.769008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Arctic-derived fungus Eutypella sp. D-1 has attracted wide attention due to its huge ability to synthesize secondary metabolites. However, current studies only focus on stimulating its production of new secondary metabolites by OSMAC strategies, and the relationship between secondary metabolites and biosynthetic gene clusters (BGCs) has not been explored. In this study, the preparation and regeneration conditions of Eutypella sp. D-1 protoplasts were explored to lay a foundation for the study of genetic transformation of this fungus. Orthogonal experiment showed that the optimal preparation conditions were 0.75 M NaCl, 20 g/L of lysing enzyme, and 20 g/L of driselase, 28°C for 6 h. The maximum yield of Eutypella sp. D-1 protoplasts could reach 6.15 × 106 cells·ml−1, and the concentration of osmotic stabilizer NaCl was the most important factor for Eutypella sp. D-1 protoplasts. The results of FDA staining showed that the prepared protoplasts had good activity. Besides, the best protoplasts regeneration medium was YEPS, whose maximum regeneration rate is 36%. The mediums with nitrogen sources, such as SR and RM, also had good effects on the Eutypella sp. D-1 protoplast regeneration, indicating that nitrogen sources played an important role on the Eutypella sp. D-1 protoplast regeneration. Subsequent transformation experiments showed that hygromycin resistance genes (hrg) could be successfully transferred into the genome of Eutypella sp. D-1, indicating that the prepared protoplasts could meet the needs of subsequent gene manipulation and research. This study lays a foundation for the genetic transformation of Eutypella sp. D-1.
Collapse
Affiliation(s)
- Yaodong Ning
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Haobing Yu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Xiaoyu Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Ethanol addition elevates cell respiratory activity and causes overproduction of natural yellow pigments in submerged fermentation of Monascus purpureus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Huang H, Ding L, Lu J, Wang N, Cai M. Combinatorial strategies for production improvement of red pigments from Antarctic fungus Geomyces sp. J Food Sci 2020; 85:3061-3071. [PMID: 32895956 DOI: 10.1111/1750-3841.15443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
Abstract
Natural red pigments have been widely used as food and cosmetics additives. However, due to toxic byproducts or allergen issues, it is still necessary to look for some other red pigment products. This study proposed combinatorial strategies to improve production of a new kind of red pigments from the fungus Geomyces WNF-15A, isolated from Antarctica. A high-production medium was developed by statistical experimental design, which was further simplified for industrial use by single-factor experiments. Strain breeding by atmospheric room temperature plasma mutagenesis generated a mutant, Geomyces sp. WNF-15A-M210, which increased production of red pigments by 24.4% and shortened culture phase by 33.3% comparing with the wild-type. The production of red pigments by this mutant favored a weak alkaline condition but required only mild dissolved oxygen tension. Control of initial pH 8.5 (process pH around 7.5) increased red pigments production by 19% comparing with natural condition. Precursor and inhibitor addition experiments indicated that the red pigments were synthesized by polyketide pathway, and feeding 6 mmol/L precursor of sodium acetate by three aliquots at days 3 to 5 improved biosynthesis of red pigments by 27%. Finally, the developed culture process was verified in a 5-L stirred tank bioreactor. The red pigments production of the pH regulation group reached 1.11-fold of the control and 1.95-fold of the precursor regulation group, respectively. This study provides high-production strain, optimized medium, and bioprocess for the possible industrial production of Antarctic Geomyces red pigments in future. PRACTICAL APPLICATION: Antarctic Geomyces red pigments showed high color value, nontoxic characteristic, and good water solubility. It holds potential for industrial use and is under development for food additive in China currently. This study provides an optional manufacturing process for this new kind of red pigments.
Collapse
Affiliation(s)
- Hezhou Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lulu Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Nengfei Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| |
Collapse
|
6
|
Zhang X, Li SJ, Li JJ, Liang ZZ, Zhao CQ. Novel Natural Products from Extremophilic Fungi. Mar Drugs 2018; 16:md16060194. [PMID: 29867059 PMCID: PMC6025453 DOI: 10.3390/md16060194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022] Open
Abstract
Extremophilic fungi have been found to develop unique defences to survive extremes of pressure, temperature, salinity, desiccation, and pH, leading to the biosynthesis of novel natural products with diverse biological activities. The present review focuses on new extremophilic fungal natural products published from 2005 to 2017, highlighting the chemical structures and their biological potential.
Collapse
Affiliation(s)
- Xuan Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| | - Shou-Jie Li
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| | - Jin-Jie Li
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| | - Zi-Zhen Liang
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| | - Chang-Qi Zhao
- Gene Engineering and Biotechnology Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|