Narra M, Rudakiya DM, Macwan K, Patel N. Black liquor: A potential moistening agent for production of cost-effective hydrolytic enzymes by a newly isolated cellulo-xylano fungal strain Aspergillus tubingensis and its role in higher saccharification efficiency.
BIORESOURCE TECHNOLOGY 2020;
306:123149. [PMID:
32179401 DOI:
10.1016/j.biortech.2020.123149]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
In the present study, black liquor generated during mild alkali pre-treatment was evaluated as a moistening agent to produce cost effective hydrolytic enzymes using novel cellulo-xylano fungal strain Aspergillus tubingensis M7. The fungus competently produced 21.90 and 22.46 filter paper, 1004 and 1369 endoglucanase, 117 and 142 β-glucosidase and 8188 and 7981 U/g xylanase activity by using modified Mandel & weber's and black liquor medium, respectively. The crude hydrolytic enzymes from black liquor were evaluated for saccharification of pre-treated biomass. Reducing sugar yields (mg/g substrate) and the corresponding saccharification efficiency (%) from rice straw, corncob, sugarcane bagasse and banana stem were 745.50 (86.02; 18 h); 596 (74.50; 24 h); 358.15 (42.98; 24 h) and 245.70 (33.00; 24 h), respectively. Residual biomass compositional analysis revealed that reduced onset temperature, increased activation energy and pre-exponential factor in saccharified biomass as compared to pre-treated and untreated biomass, suggesting their utilization for pyrolysis to obtain value added products.
Collapse