1
|
Choix FJ, Palacios OA, Mondragón-Cortez P, Ocampo-Alvarez H, Becerril-Espinosa A, Lara-González MA, Juárez-Carrillo E. Synergic association of the consortium Arthrospira maxima with the microalga growth-promoting bacterium Azospirillum cultured under the stressful biogas composition. Bioprocess Biosyst Eng 2024; 47:181-193. [PMID: 38231212 DOI: 10.1007/s00449-023-02947-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/12/2023] [Indexed: 01/18/2024]
Abstract
The present study evaluates the association of the blue-green microalga Arthrospira maxima (Spirulina), which is known for its CO2 fixation, biomass, and high-value metabolite production, with the microalga growth-promoting bacterium Azospirillum brasilense under the stressful composition of biogas. The results demonstrated that A. maxima co-cultured with A. brasilense under the high CO2 (25%) and methane (CH4; 75%) concentrations of biogas recorded a CO2 fixation rate of 0.24 ± 0.03 g L-1 days-1, thereby attaining a biomass production of 1.8 ± 0.03 g L-1. Similarly, the biochemical composition quality of this microalga enhanced the attainment of higher contents of carbohydrates, proteins, and phycocyanin than cultured alone. However, metabolites other than tryptophan (Trp) and indole-3-acetic acid could have supported this beneficial interaction. Overall, the results demonstrate that this prokaryotic consortium of A. maxima-A. brasilense established a synergic association under biogas, which represents a sustainable strategy to improve the bio-refinery capacity of this microalga and increase the usefulness of A. brasilense in multiple economic sectors.
Collapse
Affiliation(s)
- Francisco J Choix
- CONAHCYT - Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
| | - Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México
| | - Pedro Mondragón-Cortez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino Arenero 1227, C.P. 45019, Zapopan, Jalisco, México
| | - Héctor Ocampo-Alvarez
- Departamento de Ecología, CUCBA-Universidad de Guadalajara, Ramón Padilla Sánchez 2100, C.P. 45200, Zapopan, Jalisco, México
| | - Amayaly Becerril-Espinosa
- CONAHCYT - Departamento de Ecología, CUCBA-Universidad de Guadalajara, Ramón Padilla Sánchez 2100, C.P. 45200, Zapopan, Jalisco, México
| | - Martha A Lara-González
- Departamento de Ecología, CUCBA-Universidad de Guadalajara, Ramón Padilla Sánchez 2100, C.P. 45200, Zapopan, Jalisco, México
| | - Eduardo Juárez-Carrillo
- Departamento de Ecología, CUCBA-Universidad de Guadalajara, Ramón Padilla Sánchez 2100, C.P. 45200, Zapopan, Jalisco, México
- Instituto de Limnología, CUCBA-Universidad de Guadalajara, Paseo de la Loma 22, C.P. 45920, Ajijic, Jalisco, México
| |
Collapse
|
2
|
Pelagatti M, Mori G, Falsini S, Ballini R, Lazzara L, Papini A. Blue and Yellow Light Induce Changes in Biochemical Composition and Ultrastructure of Limnospira fusiformis (Cyanoprokaryota). Microorganisms 2023; 11:1236. [PMID: 37317210 DOI: 10.3390/microorganisms11051236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Limnospira fusiformis (also known as Spirulina) is a cyanobacterium that is widely cultivated due to its economic importance. It has specific pigments such as phycocyanin that allow it to grow at different light wavelengths compared to other cultivated algae. Our study investigated the effect of yellow (590 nm) and blue (460 nm) light fields on various biochemical features, including the pigment concentration, protein content, dry weight, and cell ultrastructure of L. fusiformis. Our findings revealed that biomass growth was faster in yellow light compared to blue light, with a higher relative amount of proteins even after one day of exposure. However, after eight days, the relative protein content in yellow versus blue light was not statistically different. Furthermore, in yellow light, we observed a decrease in chlorophyll a, an increase in cyanophycin granules, and an increase in the amount of dilated thylakoids. On the other hand, in blue light, there was an increase in phycocyanin after one day, along with an increase in electron-dense bodies, which are attributable to carboxysomes. However, after eight days, the differences in pigment content compared to the control were not statistically significant. Our study showed that using specific wavelengths during the harvesting phase of spirulina growth can enhance phycocyanin content with blue light (after one day) and biomass, growth rates, and protein content with yellow light after six days. This highlights the biotechnological potential of this approach.
Collapse
Affiliation(s)
- Matilde Pelagatti
- Department of Biology, University of Florence, Via P.A. Micheli, 1-3, 50121 Firenze, Italy
| | - Giovanna Mori
- Department of Biology, University of Florence, Via P.A. Micheli, 1-3, 50121 Firenze, Italy
| | - Sara Falsini
- Department of Biology, University of Florence, Via P.A. Micheli, 1-3, 50121 Firenze, Italy
| | - Raffaello Ballini
- Department of Biology, University of Florence, Via P.A. Micheli, 1-3, 50121 Firenze, Italy
| | - Luigi Lazzara
- Department of Biology, University of Florence, Via P.A. Micheli, 1-3, 50121 Firenze, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, Via P.A. Micheli, 1-3, 50121 Firenze, Italy
| |
Collapse
|
3
|
El-Shall NA, Jiang S, Farag MR, Azzam M, Al-Abdullatif AA, Alhotan R, Dhama K, Hassan FU, Alagawany M. Potential of Spirulina platensis as a feed supplement for poultry to enhance growth performance and immune modulation. Front Immunol 2023; 14:1072787. [PMID: 36798131 PMCID: PMC9927202 DOI: 10.3389/fimmu.2023.1072787] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Increase in drug resistance as well as ineffective immunization efforts against various pathogens (viruses, bacteria and fungi) pose a significant threat to the poultry industry. Spirulina is one of the most widely used natural ingredients which is becoming popular as a nutritional supplement in humans, animals, poultry and aquaculture. It contains protein, vitamins, minerals, fatty acids, pigments, and essential amino acids. Moreover, it also has considerable quantities of unique natural antioxidants including polyphenols, carotenoids, and phycocyanin. Dietary supplementation of Spirulina can beneficially affect gut microbial population, serum biochemical parameters, and growth performance of chicken. Additionally, it contains polyphenolic contents having antibacterial effects. Spirulina extracts might inhibit bacterial motility, invasion, biofilm formation, and quorum sensing in addition to acting directly on the bacterium by weakening and making the bacterial cell walls more porous, subsequently resulting in cytoplasmic content leakage. Additionally, Spirulina has shown antiviral activities against certain common human or animal viruses and this capability can be considered to exhibit potential benefits against avian viruses also. Spirulan, a calcium-rich internal polysaccharide of Spirulina, is potentially responsible for its antiviral effect through inhibiting the entry of several viruses into the host cells, boosting the production of nitric oxide in macrophages, and stimulating the generation of cytokines. Comparatively a greater emphasis has been given to the immune modulatory effects of Spirulina as a feed additive in chicken which might boost disease resistance and improve survival and growth rates, particularly under stress conditions. This manuscript reviews biological activities and immune-stimulating properties of Spirulina and its potential use as a dietary supplement in poultry to enhance growth, gut health and disease resistance.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, Egypt
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, Guangdong, China
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Poultry Production Department, Agriculture Faculty, Mansoura University, Mansoura, Egypt
| | - Abdulaziz A Al-Abdullatif
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rashed Alhotan
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Recearch-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Faiz-Ul Hassan
- Institute of animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Utility of fatty acid profile and in vitro immune cell activation for chemical and biological standardization of Arthrospira/Limnospira. Sci Rep 2022; 12:15657. [PMID: 36123360 PMCID: PMC9485217 DOI: 10.1038/s41598-022-19590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Commercially cultivated Limnospira (species formerly classified to genus Arthrospira) is a popular food/supplement consumed by millions of people worldwide for health benefits. The objective of the current research was to advance the standardization technology for Limnospira. Quantitative methods were established to detect fatty acids as potential chemical markers and immune-enhancing activity. Analysis of 20 different batches of biomass obtained from one commercial grower demonstrated that there was a statistically significant relationship between the sum of two fatty acids (linoleic and γ-linolenic) and Toll-like receptor (TLR)2/TLR1-dependent activation (R2 = 0.48, p = 0.0007). Investigation of 12 biomass samples sourced from growers in 10 different countries demonstrated that fatty acid content was again significantly correlated with biological activity (R2 = 0.72, p = 0.0005) and the content of fatty acids varied by twofold and activity by 12.5-fold. This large variation between different samples confirms the need to use the present standardization methods to ensure consistent and properly characterized biomass for consumers and for future scientific research.
Collapse
|
5
|
Altmann BA, Rosenau S. Spirulina as Animal Feed: Opportunities and Challenges. Foods 2022; 11:foods11070965. [PMID: 35407052 PMCID: PMC8997485 DOI: 10.3390/foods11070965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 01/12/2023] Open
Abstract
Increasing demand for protein, especially animal-based proteins and the large amounts of protein feed inputs required for production, has largely driven the research on spirulina as an animal feed. This short communication summarizes the results from two larger research projects investigating spirulina as an animal feed. Overall, spirulina appears to be a prospective protein source in poultry and pork production, as well as aquaculture. However, spirulina as a feed can have implications for system productivity and end product quality, depending on animal production system. Neither swine productivity nor product quality was negatively affected with spirulina as a feed, which is likely due to the low amounts of protein required in swine finishing diets. Spirulina as a feed does negatively affect poultry and fish productivity as well as alter product quality, primarily raw meat color. Therefore, future research focused on sustainability analysis and product processing and acceptance should investigate the trade-offs of incorporating spirulina into poultry and fish diets.
Collapse
|
6
|
Lamolinara B, Pérez-Martínez A, Guardado-Yordi E, Guillén Fiallos C, Diéguez-Santana K, Ruiz-Mercado GJ. Anaerobic digestate management, environmental impacts, and techno-economic challenges. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:14-30. [PMID: 35032793 PMCID: PMC10466263 DOI: 10.1016/j.wasman.2021.12.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Digestate is a nutrient-rich by-product from organic waste anaerobic digestion but can contribute to nutrient pollution without comprehensive management strategies. Some nutrient pollution impacts include harmful algal blooms, hypoxia, and eutrophication. This contribution explores current productive uses of digestate by analyzing its feedstocks, processing technologies, economics, product quality, impurities, incentive policies, and regulations. The analyzed studies found that feedstock, processing technology, and process operating conditions highly influence the digestate product characteristics. Also, incentive policies and regulations for managing organic waste by anaerobic digestion and producing digestate as a valuable product promote economic benefits. However, there are not many governmental and industry-led quality assurance certification systems for supporting commercializing digestate products. The sustainable and safe use of digestate in different applications needs further development of technologies and processes. Also, incentives for digestate use, quality regulation, and social awareness are essential to promote digestate product commercialization as part of the organic waste circular economy paradigm. Therefore, future studies about circular business models and standardized international regulations for digestate products are needed.
Collapse
Affiliation(s)
- Barbara Lamolinara
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal - Zona Industrial, Marinha Grande 2430-028, Portugal
| | - Amaury Pérez-Martínez
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Estela Guardado-Yordi
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Christian Guillén Fiallos
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Karel Diéguez-Santana
- Universidad Estatal Amazónica, km. 2. 1/2 vía Puyo a Tena (Paso Lateral), Puyo, Pastaza 160150, Ecuador
| | - Gerardo J Ruiz-Mercado
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin L. King Dr. Cincinnati, OH 45268, USA; Chemical Engineering Graduate Program, University of Atlántico, Puerto Colombia 080007, Colombia.
| |
Collapse
|
7
|
The Evaluation of Arthrospira platensis Bioactivity and their Dietary Supplementation to Nile Tilapia Vegetarian Diet on Growth Performance, Feed Utilization, Body Composition and Hemato-Biochemical Parameters. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
The present study aimed to identify the carotenoid content and evaluate the antioxidant activities of spirulina, Arthrospira platensis (in vitro), and the effect of its supplementation to a vegetarian diet on growth performance, feed utilization, body proximate composition and physiological status of Nile tilapia, Oreochromis niloticus (in vivo). The carotenoid content of spirulina was identified by UPLC-MS/MS and showed that trans and cis β-carotene were the major carotenoids (88.3%) followed by β-cryptoxanthin and zeaxanthin. The antioxidant activity of spirulina was determined in water and crude carotenoid extracts by 2,2-diphenyl-1-picryhydrazyl (DPPH) scavenging assay, both extracts showed a significant free radical scavenging capacity. In addition, Nile tilapia fry (0.83 ± 0.01 g) was fed a vegetarian diet supplemented with different levels of spirulina for 12 weeks. The results revealed that the highest growth performance and nutrient utilization were recorded with 0.5% spirulina and the peak response determined at 0.63%-0.65% using polynomial second order regression. Also, the hemoglobin content improved in a quadratic regression model with the peak at 0.67% spirulina. Plasma total protein and lipid contents increased significantly with spirulina levels over 0.50%. Moreover, the aminopeptidase activities and glucose level decreased significantly with increasing spirulina levels. The current study recommended the supplementation of the Nile tilapia vegetarian diet with spirulina at levels of 0.63-0.65% for better growth performance and physiological status.
Collapse
|
8
|
Gameiro T, Novais RM, Correia CL, Carvalheiras J, Seabra MP, Tarelho LAC, Labrincha JA, Capela I. Role of waste-based geopolymer spheres addition for pH control and efficiency enhancement of anaerobic digestion process. Bioprocess Biosyst Eng 2021; 44:1167-1183. [PMID: 33575842 DOI: 10.1007/s00449-021-02522-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/27/2021] [Indexed: 11/26/2022]
Abstract
In anaerobic digestion processes, pH has a vital role due to the direct impacts on the microbial community. An eco-friendly approach has been applied to control pH in anaerobic bioreactors, using waste-containing fly ash geopolymer spheres (GS) instead of powdered chemical compounds, to promote continuous alkalis leaching. The influence of GS porosity and concentration on the behavior of anaerobic sequential batch reactor treating cheese whey was evaluated. Results showed that the use of GS with the highest concentration and porosity promoted an increase in methane yield up to 30%, compared to the assay with powdered chemical compounds addition. In addition, GS boosted butyric acid production to the detriment of propionic acid, which favored methane production by a factor up to 1.2. This innovative approach indicates that GS addition can regulate pH in anaerobic digesters treating challenging wastewaters and, simultaneously, improve not only its efficiency but also the sustainability of the entire process.
Collapse
Affiliation(s)
- Tânia Gameiro
- Department of Environment and Planning/CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rui M Novais
- Department of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina L Correia
- Department of Environment and Planning/CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João Carvalheiras
- Department of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria P Seabra
- Department of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Luís A C Tarelho
- Department of Environment and Planning/CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João A Labrincha
- Department of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel Capela
- Department of Environment and Planning/CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Growing Spirulina (Arthrospira platensis) in seawater supplemented with digestate: Trade-offs between increased salinity, nutrient and light availability. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Altmann BA, Wigger R, Ciulu M, Mörlein D. The effect of insect or microalga alternative protein feeds on broiler meat quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4292-4302. [PMID: 32378214 DOI: 10.1002/jsfa.10473] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In order to combat environmental and food security concerns associated with the increasing demand for soymeal related to increasing meat consumption, this study determines the chicken meat quality derived when soymeal is substituted for either partially de-fatted Hermetia illucens larval meal or spirulina (Arthrospira platensis) in broiler diets. Physicochemical parameters, sensory traits, and fatty acid composition of the meat are investigated, as well as an experiment to evaluate the impact of highly oxygenated atmosphere versus vacuum-bag packaging on shelf life was conducted. RESULTS Hermetia illucens did not compromise quality; meat was slightly more yellow (higher b*), had a slightly decreased pH, and was less adhesive during chewing compared to the soy-fed control. Furthermore, Hermetia illucens resulted in higher saturated fatty acids proportions in thigh meat. Spirulina resulted in redder (higher a*) and more yellow (higher b*) meat with a slightly increased umami and chicken flavour. Spirulina-fed chicken meat had higher lipid oxidation levels compared to the control after being packaged in a highly oxygenated atmosphere; although, differences between the spirulina-fed and control fatty acid composition in thigh meat were minor. CONCLUSION Both alternative protein feeds show potential to replace soymeal in broiler diets; however, they do result in moderately altered products.
Collapse
Affiliation(s)
- Brianne A Altmann
- Department of Animal Sciences, University of Göttingen, Goettingen, Germany
| | - Ruth Wigger
- Department of Animal Sciences, University of Göttingen, Goettingen, Germany
| | - Marco Ciulu
- Department of Animal Sciences, University of Göttingen, Goettingen, Germany
| | - Daniel Mörlein
- Department of Animal Sciences, University of Göttingen, Goettingen, Germany
| |
Collapse
|
11
|
Arashiro LT, Boto-Ordóñez M, Van Hulle SWH, Ferrer I, Garfí M, Rousseau DPL. Natural pigments from microalgae grown in industrial wastewater. BIORESOURCE TECHNOLOGY 2020; 303:122894. [PMID: 32032937 DOI: 10.1016/j.biortech.2020.122894] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 05/24/2023]
Abstract
The aim of this study was to investigate the cultivation of Nostoc sp., Arthrospira platensis and Porphyridium purpureum in industrial wastewater to produce phycobiliproteins. Initially, light intensity and growth medium composition were optimized, indicating that light conditions influenced the phycobiliproteins production more than the medium composition. Conditions were then selected, according to biomass growth, nutrients removal and phycobiliproteins production, to cultivate these microalgae in food-industry wastewater. The three species could efficiently remove up to 98%, 94% and 100% of COD, inorganic nitrogen and PO43--P, respectively. Phycocyanin, allophycocyanin and phycoerythrin were successfully extracted from the biomass reaching concentrations up to 103, 57 and 30 mg/g dry weight, respectively. Results highlight the potential use of microalgae for industrial wastewater treatment and related high-value phycobiliproteins recovery.
Collapse
Affiliation(s)
- Larissa T Arashiro
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain; LIWET - Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | | | - Stijn W H Van Hulle
- LIWET - Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain.
| | - Diederik P L Rousseau
- LIWET - Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| |
Collapse
|
12
|
Analysis of the use of a non-conventional rotary drum for dehydration of microalga Spirulina platensis. Bioprocess Biosyst Eng 2020; 43:1359-1367. [PMID: 32219536 DOI: 10.1007/s00449-020-02329-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
The high content of bioactive compounds in the microalga Spirulina platensis has recently attracted attention from food and pharmaceutical industries. However, for its application an effective preservation technique must be developed. In this paper, we investigated the use of a non-conventional rotary dryer (with an inert bed) for drying the microalga Spirulina biomass and the effects of the operational conditions (air temperature, intermittent feeding interval, filling degree of inert particles, and rotation speed) on its bioactive compounds. The results indicated that this non-conventional drying system offers an effective alternative for expanding the use of this biomass in an adequate form. We identified the conditions in which the dried material had maintained satisfactory contents of phenolics (air temperature of 70 °C and intermittent feeding interval of 10 min), flavonoids (intermittent feeding interval of 17.4 min), and phycocyanin compounds (air temperature of 40 °C), which were near to those present in fresh microalga.
Collapse
|
13
|
Shanthi G, Premalatha M, Anantharaman N. Effects of l-amino acids as organic nitrogen source on the growth rate, biochemical composition and polyphenol content of Spirulina platensis. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Anaerobic and photocatalytic treatments of post-hydrothermal liquefaction wastewater using H2O2. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|