1
|
Ramachandran DU, Gummadi SN. Kinetically controlled irreversible unfolding of esterase from Clostridium acetobutylicum: Thermal deactivation kinetics and structural studies. Int J Biol Macromol 2025; 297:139604. [PMID: 39788269 DOI: 10.1016/j.ijbiomac.2025.139604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study involves the thermal characterization of Ca-Est, an esterase from Clostridium acetobutylicum which has been previously found to exhibit maximum specific activity at 60 °C. In the present study, Ca-Est showed maximum stability at 30 °C with almost 75 % of its initial activity being retained after incubation for 5 h and the stability decreased with increasing temperature. Analysis of the thermodynamic parameters revealed that the deactivation of Ca-Est is endothermic and enthalpically favored. Circular Dichroism studies reveal that Ca-Est follows heat-induced irreversible unfolding. The melting temperature of the enzyme varied with different scan rates implying that the irreversible unfolding is kinetically controlled. At higher temperatures, unfolding of the protein resulted in the formation of aggregates which possibly prevented it from refolding back to its native structure. Intriguingly, at lower temperatures, where non aggregated states were present, unfolded Ca-Est did not refold back to the native structure, rather there was an increase in the percentage of beta sheets implying that the irreversibility could be due to an incorrect folding of the unfolded states which consecutively results in higher probability of forming aggregates. Future studies focusing on strategies to improve the reversibility would enhance the functionality of Ca-Est.
Collapse
Affiliation(s)
- Devasena Umai Ramachandran
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India.
| |
Collapse
|
2
|
Gampa M, Nagar S, Kumari K, Tanwar E, Goyal S, Kumar V, Singh B. Cyclic extraction of phosphate from soybean meal using immobilized Aspergillus oryzae SBS50 phytase. Bioprocess Biosyst Eng 2024; 47:39-55. [PMID: 37962643 DOI: 10.1007/s00449-023-02943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Phytase enzyme found in plants, animals, and microorganisms is mainly involved in catalyzing the systematic removal of a phosphate group from phytic acid. Enzyme immobilization is one of the cost-effective methods for the wide usage of enzymes in the industrial sector. This paper reports the covalent immobilization of phytase on glutaraldehyde-activated aluminum oxide beads. The immobilization yield, efficiency, and activation energy were found to be 47.8%, 71.5%, and 15.78 J/mol, respectively. The bound enzyme displayed a shift in pH optima from 5.5 to 4.5, which is more beneficial to increase digestibility in comparison with the free enzyme. Immobilized phytase retained 42.60% of its activity after 1.0 h incubation at 80 °C, whereas free enzyme retained only 4.20% of its activity. Thermodynami increase in half-lives, D-values, enthalpy and free energy change after covalent immobilization could be credited to the enhanced stability. Immobilized phytase could be reused for five consecutive cycles retaining 51% of its initial activity with sodium phytate. The immobilized phytase was also found effective to hydrolyze the soybean meal, thus increasing the digestibility of poultry feed. The hydrolyzing reaction of soybean meal was carried out for six consecutive cycles and immobilized phytase retained nearly 50% of activity till the fifth cycle. The amount of phosphorus released after treatment with immobilized phytase was far higher than that from free phytase. Immobilization on this support is significant, as this support can sustain high mechanical resistance at high pH and temperature. This considerable stability and reusability of the bound enzyme may be advantageous for its industrial application.
Collapse
Affiliation(s)
- Mallesh Gampa
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Sushil Nagar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India.
| | - Kajal Kumari
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Ekta Tanwar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Sakshi Goyal
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Vinod Kumar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Bijender Singh
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| |
Collapse
|
3
|
Ahmed Z, Arshad A, Bilal M, Iqbal HMN, Ahmed I. Nano-biocatalytic Systems for Cellulose de-polymerization: A Drive from Design to Applications. Top Catal 2023; 66:592-605. [DOI: 10.1007/s11244-023-01785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/24/2023]
|
4
|
Guajardo N. Immobilization of Lipases Using Poly(vinyl) Alcohol. Polymers (Basel) 2023; 15:polym15092021. [PMID: 37177168 PMCID: PMC10181104 DOI: 10.3390/polym15092021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Lipases are very versatile enzymes because they catalyze various hydrolysis and synthesis reactions in a chemo-, regio-, and stereoselective manner. From a practical point of view, immobilization allows the recovery and stabilization of the biocatalyst for its application in different types of bioreactors. Among the various support options for immobilizing lipases is polyvinyl alcohol (PVA), which, when functionalized or combined with other materials, provides different characteristics and properties to the biocatalyst. This review analyzes the multiple possibilities that PVA offers as a material to immobilize lipases when combined with alginate, chitosan, and hydroxypropylmethylcellulose (HPMC), incorporating magnetic properties together with the formation of fibers and microspheres. The articles analyzed in this review were selected using the Scopus database in a range of years from 1999 to 2023, finding a total of 42 articles. The need to expand knowledge in this area is due to the great versatility and scaling possibilities that PVA has as a support for lipase immobilization and its application in different bioreactor configurations.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| |
Collapse
|
5
|
Nickel-Functionalized Chitosan for the Oriented Immobilization of Histidine-Tagged Enzymes: A Promising Support for Food Bioprocess Applications. Catal Letters 2022. [DOI: 10.1007/s10562-021-03912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Nano-organic supports for enzyme immobilization: Scopes and perspectives. Colloids Surf B Biointerfaces 2021; 204:111774. [PMID: 33932893 DOI: 10.1016/j.colsurfb.2021.111774] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
A variety of organic nanomaterials and organic polymers are used for enzyme immobilization to increase enzymes stability and reusability. In this study, the effects of the immobilization of enzymes on organic and organic-inorganic hybrid nano-supports are compared. Immobilization of enzymes on organic support nanomaterials was reported to significantly improve thermal, pH and storage stability, acting also as a protection against metal ions inhibitory effects. In particular, the effects of enzyme immobilization on reusability, physical, kinetic and thermodynamic parameters were considered. Due to their biocompatibility with low health risks, organic support nanomaterials represent a good choice for the immobilization of enzymes. Organic nanomaterials, and especially organic-inorganic hybrids, can significantly improve the kinetic and thermodynamic parameters of immobilized enzymes compared to macroscopic supports. Moreover, organic nanomaterials are more environment friendly for medical applications, such as prodrug carriers and biosensors. Overall, organic hybrid nanomaterials are receiving increasing attention as novel nano-supports for enzyme immobilization and will be used extensively.
Collapse
|
7
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
8
|
Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 2021; 179:170-195. [PMID: 33667561 DOI: 10.1016/j.ijbiomac.2021.02.198] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023]
Abstract
Immobilized enzymes have received incredible interests in industry, pharmaceuticals, chemistry and biochemistry sectors due to their various advantages such as ease of separation, multiple reusability, non-toxicity, biocompatibility, high activity and resistant to environmental changes. This review in between various immobilized enzymes focuses on lipase as one of the most practical enzyme and chitosan as a preferred biosupport for lipase immobilization and provides a broad range of studies of recent decade. We highlight several aspects of lipase immobilization on the surface of chitosan support containing various types of lipase and immobilization techniques from physical adsorption to covalent bonding and cross-linking with their benefits and drawbacks. The recent advances and future perspectives that can improve the present problems with lipase and chitosan such as high-price of lipase and low mechanical resistance of chitosan are also discussed. According to the literature, optimization of immobilization methods, combination of these methods with other techniques, physical and chemical modifications of chitosan, co-immobilization and protein engineering can be useful as a solution to overcome the mentioned limitations.
Collapse
|
9
|
Badgujar KC, Dange R, Bhanage BM. Recent advances of use of the supercritical carbon dioxide for the biomass pre-treatment and extraction: A mini-review. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Song M, Di X, Zhang Y, Sun Y, Wang Z, Yuan Z, Guo Y. The effect of enzyme loading, alcohol/acid ratio and temperature on the enzymatic esterification of levulinic acid with methanol for methyl levulinate production: a kinetic study. RSC Adv 2021; 11:15054-15059. [PMID: 35424031 PMCID: PMC8698936 DOI: 10.1039/d1ra01780b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 01/26/2023] Open
Abstract
Based on reaction reversibility and the law of mass action, a mathematical model was developed. By the developed model, the effect of enzyme loading, molar alcohol/acid ratio, and temperature on methyl levulinate yield was kinetically analyzed.
Collapse
Affiliation(s)
- Miaojia Song
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Xiaohui Di
- Laboratory of Synthesis, Organic Reactivity & Catalysis
- Strasbourg Institute of Chemistry, associated with CNRS (UMR 7177)
- University of Strasbourg
- France
| | - Yu Zhang
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Ying Guo
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| |
Collapse
|
11
|
Ismail AR, Baek KH. Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects. Int J Biol Macromol 2020; 163:1624-1639. [DOI: 10.1016/j.ijbiomac.2020.09.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
|
12
|
Iriarte-Mesa C, López YC, Matos-Peralta Y, de la Vega-Hernández K, Antuch M. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications. Top Curr Chem (Cham) 2020; 378:12. [PMID: 31907672 DOI: 10.1007/s41061-019-0275-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | - Yeisy C López
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba.,Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, 11 500, Ciudad de México, Mexico
| | - Yasser Matos-Peralta
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | | | - Manuel Antuch
- Unité de Chimie et Procédés, École Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| |
Collapse
|
13
|
Tsai WC, Wang Y. Progress of supercritical fluid technology in polymerization and its applications in biomedical engineering. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Filho DG, Silva AG, Guidini CZ. Lipases: sources, immobilization methods, and industrial applications. Appl Microbiol Biotechnol 2019; 103:7399-7423. [DOI: 10.1007/s00253-019-10027-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/15/2023]
|
15
|
Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD. Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00448] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruno R. Facin
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Marina S. Melchiors
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J. Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
16
|
Awasthi A, Dhyani V, Biswas B, Kumar J, Bhaskar T. Production of phenolic compounds using waste coir pith: Estimation of kinetic and thermodynamic parameters. BIORESOURCE TECHNOLOGY 2019; 274:173-179. [PMID: 30504100 DOI: 10.1016/j.biortech.2018.11.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
The present study illustrates the production of phenolic compounds via slow pyrolysis of coir pith biomass in a bench-scale reactor. The primary objective of the study is to optimize the pyrolysis conditions to maximize the yield of bio-oil and phenolic compounds. Up to 88.14% phenolic compounds were obtained in the organic fraction of the bio-oil obtained at 350 °C. The phenolic compounds thus extracted can be used for the production of phenol-formaldehyde resins, which reduces the dependence on petroleum-based phenols for the manufacturing of resin. An independent kinetic analysis of the apparent pyrolysis reaction was also performed using thermogravimetry and isoconversional methodology. The calculated values of activation energy showed a variation from 28.41 to 200.09 kJ/mol, with the mean value being 140 kJ/mol. The thermodynamic parameters (ΔS, ΔH, and ΔG) were subsequently evaluated at different conversions using the activation energy values obtained from the kinetic analysis.
Collapse
Affiliation(s)
- Ayushi Awasthi
- Thermo-Catalytic Processes Area (TPA), Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Vaibhav Dhyani
- Thermo-Catalytic Processes Area (TPA), Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Bijoy Biswas
- Thermo-Catalytic Processes Area (TPA), Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Jitendra Kumar
- Thermo-Catalytic Processes Area (TPA), Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Thallada Bhaskar
- Thermo-Catalytic Processes Area (TPA), Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), India.
| |
Collapse
|
17
|
A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts 2018. [DOI: 10.3390/catal8020092] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Jiaojiao X, Bin Z, Gangbin Z, Ping W, Zhenjiang L. Quick separation and enzymatic performance improvement of lipase by ionic liquid-modified Fe 3O 4 carrier immobilization. Bioprocess Biosyst Eng 2018; 41:739-748. [PMID: 29411098 DOI: 10.1007/s00449-018-1907-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/31/2018] [Indexed: 01/19/2023]
Abstract
To promote the activity and stability of immobilized porcine pancreatic lipase (PPL), novel carrier was combined with special immobilization method. Enzymatic activity was enhanced after immobilized onto ionic liquid modified magnetic Fe3O4 by electrostatic adsorption. Activity of immobilized enzyme (PPL-IM/BF4-Fe3O4@CA) reached 596 U/g PPL. Through the combination of electrostatic adsorption and embedding immobilization methods, we improve binding force between the carrier and enzyme, and further enhance the efficiency and stability of immobilized enzyme. The activity of PPL-IM/BF4-Fe3O4@CA after repeated third use was 78%. After storage at room temperature for 5 days, the residual activity was 89%. Enzymatic properties and catalytic kinetics of immobilized enzymes were studied, and the effect mechanism of ionic liquid modified Fe3O4 on PPL was revealed. The effect of ionic liquid on the carrier structure was investigated by characterization of XRD, FT-IR, SEM and TG. The mechanism and enzymatic properties of immobilized PPL via electrostatic adsorption and embedding were analyzed. A novel and efficient immobilized PPL was developed.
Collapse
Affiliation(s)
- Xia Jiaojiao
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zou Bin
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Zhu Gangbin
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| | - Wei Ping
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| | - Liu Zhenjiang
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, China
| |
Collapse
|
19
|
Chen Z, Liu L, Yang R. Improved performance of immobilized lipase by interfacial activation on Fe3O4@PVBC nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra05723g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An effective strategy for enhancement of catalytic activity and stability of immobilized lipase by interfacial activation on Fe3O4@polyvinylbenzyl chloride nanoparticles is proposed.
Collapse
Affiliation(s)
- Zhiming Chen
- School of Biological and Chemical Engineering
- Anhui Polytechnic University
- Wuhu 241000
- PR China
| | - Leilei Liu
- School of Biological and Chemical Engineering
- Anhui Polytechnic University
- Wuhu 241000
- PR China
| | - Renchun Yang
- School of Biological and Chemical Engineering
- Anhui Polytechnic University
- Wuhu 241000
- PR China
| |
Collapse
|