1
|
Karaalioğlu O, Yüceer YK. Nonconventional yeasts to produce aroma compounds by using agri-food waste materials. FEMS Yeast Res 2021; 21:6455311. [PMID: 34875055 DOI: 10.1093/femsyr/foab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022] Open
Abstract
Nowadays, biotechnological applications are emphasized to ensure sustainable development by reutilizing waste materials to prevent ecological problems and to produce or recover compounds that may have positive effects on health. Yeasts are fascinating microorganisms that play a key role in several traditional and innovative processes. Although Saccharomyces is the most important genus of yeasts, and they are major producers of biotechnological products worldwide, a variety of other yeast genera and species than Saccharomyces that are called 'non-Saccharomyces' or 'nonconventional' yeasts also have important potential for use in biotechnological applications. Some of the nonconventional yeast strains offer a unique potential for biotechnological applications to produce valuable secondary metabolites due to their characteristics of surviving and growing in such extreme conditions, e.g. wide substrate range, rapid growth, thermotolerance, etc. In this review, we aimed to summarize potential biotechnological applications of some nonconventional yeasts (Kluyveromyces spp., Yarrowia spp., Pichia spp., Candida spp., etc.) to produce industrially important aroma compounds (phenylethyl alcohol, phenylethyl acetate, isobutyl acetate, diacetyl, etc.) by reutilizing agri-food waste materials in order to prevent ecological problems and to produce or recover compounds that may have positive effects on health.
Collapse
Affiliation(s)
- Onur Karaalioğlu
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey
| | - Yonca Karagül Yüceer
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey
| |
Collapse
|
2
|
Serna-Vázquez J, Zamidi Ahmad M, Castro-Muñoz R. Simultaneous production and extraction of bio-chemicals produced from fermentations via pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Castro-Muñoz R, Ahmad MZ, Cassano A. Pervaporation-aided Processes for the Selective Separation of Aromas, Fragrances and Essential (AFE) Solutes from Agro-food Products and Wastes. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110, Toluca De Lerdo, Mexico
| | - M. Zamidi Ahmad
- Organic Materials Innovation Center (OMIC),University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alfredo Cassano
- Institute on Membrane Technology ITM-CNR Via P. Bucci, 17/C, 87036, Rende, (CS), Italy
| |
Collapse
|
4
|
|
5
|
Wenten I, Khoiruddin K, Reynard R, Lugito G, Julian H. Advancement of forward osmosis (FO) membrane for fruit juice concentration. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110216] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Prabhu AA, Bosakornranut E, Amraoui Y, Agrawal D, Coulon F, Vivekanand V, Thakur VK, Kumar V. Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:209. [PMID: 33375948 PMCID: PMC7772924 DOI: 10.1186/s13068-020-01845-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/28/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Integrated management of hemicellulosic fraction and its economical transformation to value-added products is the key driver towards sustainable lignocellulosic biorefineries. In this aspect, microbial cell factories are harnessed for the sustainable production of commercially viable biochemicals by valorising C5 and C6 sugars generated from agro-industrial waste. However, in the terrestrial ecosystem, microbial systems can efficiently consume glucose. On the contrary, pentose sugars are less preferred carbon source as most of the microbes lack metabolic pathway for their utilization. The effective utilization of both pentose and hexose sugars is key for economical biorefinery. RESULTS Bioprospecting the food waste and selective enrichment on xylose-rich medium led to screening and isolation of yeast which was phylogenetically identified as Pichia fermentans. The newly isolated xylose assimilating yeast was explored for xylitol production. The wild type strain robustly grew on xylose and produced xylitol with > 40% conversion yield. Chemical mutagenesis of isolated yeast with ethyl methanesulphonate (EMS) yielded seven mutants. The mutant obtained after 15 min EMS exposure, exhibited best xylose bioconversion efficiency. This mutant under shake flask conditions produced maximum xylitol titer and yield of 34.0 g/L and 0.68 g/g, respectively. However, under the same conditions, the control wild type strain accumulated 27.0 g/L xylitol with a conversion yield of 0.45 g/g. Improved performance of the mutant was attributed to 34.6% activity enhancement in xylose reductase with simultaneous reduction of xylitol dehydrogenase activity by 22.9%. Later, the culture medium was optimized using statistical design and validated at shake flask and bioreactor level. Bioreactor studies affirmed the competence of the mutant for xylitol accumulation. The xylitol titer and yield obtained with pure xylose were 98.9 g/L and 0.67 g/g, respectively. In comparison, xylitol produced using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse was 79.0 g/L with an overall yield of 0.54 g/g. CONCLUSION This study demonstrates the potential of newly isolated P. fermentans in successfully valorising the hemicellulosic fraction for the sustainable xylitol production.
Collapse
Affiliation(s)
- Ashish A Prabhu
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ekkarin Bosakornranut
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Yassin Amraoui
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
7
|
Hamerski F, Dusi GG, Fernandes dos Santos JT, da Silva VR, Pedersen Voll FA, Corazza ML. Esterification reaction kinetics of acetic acid and n‐pentanol catalyzed by sulfated zirconia. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fabiane Hamerski
- Department of Chemical EngineeringFederal University of Paraná (UFPR) Curitiba PR Brazil
| | - Giovana Gonçalves Dusi
- Department of Chemical EngineeringFederal University of Paraná (UFPR) Curitiba PR Brazil
| | | | - Vítor Renan da Silva
- Department of Chemical EngineeringFederal University of Paraná (UFPR) Curitiba PR Brazil
| | | | - Marcos Lúcio Corazza
- Department of Chemical EngineeringFederal University of Paraná (UFPR) Curitiba PR Brazil
| |
Collapse
|
8
|
Belafi-Bako K, Toth G, Nemestothy N. Application of polymer membranes in downstream processes. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe purpose of downstream processing in a fermentation technology is the isolation, purification and concentration of the final product. Membrane processes are generally used in these steps. In this paper, the application possibilities of polymer membranes in pressure-driven membrane techniques (microfiltration, ultrafiltration, nanofiltration), pervaporation, dialysis and electrodialysis are presented.
Collapse
Affiliation(s)
- Katalin Belafi-Bako
- Research Institute on Biochemical Engineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., 8200Veszprem, Hungary
| | - Gabor Toth
- Research Institute on Biochemical Engineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., 8200Veszprem, Hungary
| | - Nandor Nemestothy
- Research Institute on Biochemical Engineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., 8200Veszprem, Hungary
| |
Collapse
|
9
|
Azimi H, Tezel H, Thibault J. Optimization of the in situ recovery of butanol from ABE fermentation broth via membrane pervaporation. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Unlu D. Concentration of aroma compounds by pervaporation process using polyvinyl chloride membrane. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Derya Unlu
- Chemical Engineering Department Bursa Technical University Bursa Turkey
| |
Collapse
|
11
|
Castro-Muñoz R. Pervaporation: The emerging technique for extracting aroma compounds from food systems. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Karp JR, Hamerski F, da Silva VR, Medeiros AB. Membrane processing of the Brazilian spirit Cachaça. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel R. Karp
- Graduate Program in Mechanical and Materials Engineering; Federal University of Technology of Paraná; Department of Alencar Furtado St, Curitiba Paraná Brazil
| | - Fabiane Hamerski
- Chemical Engineering Department; Federal University of Paraná; Av. Cel. Francisco H. dos Santos, Curitiba Paraná Brazil
| | - Vítor R. da Silva
- Chemical Engineering Department; Federal University of Paraná; Av. Cel. Francisco H. dos Santos, Curitiba Paraná Brazil
| | - Adriane B.P. Medeiros
- Department of Bioprocess Engineering and Biotechnology, Av. Cel. Francisco H. dos Santos; Federal University of Paraná; Curitiba Paraná Brazil
| |
Collapse
|
13
|
Gharib-Bibalan S. High Value-added Products Recovery from Sugar Processing By-products and Residuals by Green Technologies: Opportunities, Challenges, and Prospects. FOOD ENGINEERING REVIEWS 2018. [DOI: 10.1007/s12393-018-9174-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|