1
|
Paixão SM, Silva TP, Salgado F, Alves L. Strawberry Tree Fruit Residue as Carbon Source Towards Sustainable Fuel Biodesulfurization by Gordonia alkanivorans Strain 1B. Molecules 2025; 30:2137. [PMID: 40430310 PMCID: PMC12114536 DOI: 10.3390/molecules30102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Biodesulfurization (BDS) is a clean technology that uses microorganisms to efficiently remove sulfur from recalcitrant organosulfur compounds present in fuels (fossil fuels or new-generation fuels resulting from pyrolysis and hydrothermal liquefaction). One of the limitations of this technology is the low desulfurization rates. These result in the need for greater amounts of biocatalyst and lead to increased production costs. To mitigate this issue, several approaches have been pursued, such as the use of alternative carbon sources (C-sources) from agro-industrial waste streams or the co-production of high-added-value products by microorganisms. The main goal of this work is to assess the potential of strawberry tree fruit residue (STFr) as an alternative C-source for a BDS biorefinery using Gordonia alkanivorans strain 1B, a well-known desulfurizing bacterium with high biotechnological potential. Hence, the first step was to produce sugar-rich liquor from the STFr and employ it in shake-flask assays to evaluate the influence of different pretreatments (treatments with 1-4% activated charcoal for prior phenolics removal) on metabolic parameters and BDS rates. Afterwards, the liquor was used as the C-source in chemostat assays, compared to commercial sugars, to develop and optimize the use of STFr-liquor as a viable C-source towards cost-effective biocatalyst production. Moreover, the high-market-value bioproducts simultaneously produced during microbial growth were also evaluated. In this context, the best results, considering both the production of biocatalysts with BDS activity and simultaneous bioproduct production (carotenoids and gordofactin biosurfactant/bioemulsifier) were achieved when strain 1B was cultivated in a chemostat with untreated STFr-liquor (5.4 g/L fructose + glucose, 6:4 ratio) as the C-source and in a sulfur-free mineral-minimized culture medium at a dilution rate of 0.04 h-1. Cells from this steady-state culture (STFr L1) achieved the highest desulfurization with 250 mM of dibenzothiophene as a reference organosulfur compound, producing a maximum of ≈213 mM of 2-hydroxibyphenil (2-HBP) with a corresponding specific rate (q2-HBP) of 6.50 µmol/g(DCW)/h (where DCW = dry cell weight). This demonstrates the potential of STFr as a sustainable alternative C-source for the production of cost-effective biocatalysts without compromising BDS ability. Additionally, cells grown in STFr L1 also presented the highest production of added-value products (338 ± 15 µg/g(DCW) of carotenoids and 8 U/mL of gordofactin). These results open prospects for a future G. alkanivorans strain 1B biorefinery that integrates BDS, waste valorization, and the production of added-value products, contributing to the global economic viability of a BDS process and making BDS scale-up a reality in the near future.
Collapse
Affiliation(s)
- Susana M. Paixão
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| | - Tiago P. Silva
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
- Departamento de Alterações Climáticas, APA—Agência Portuguesa do Ambiente, Rua da Murgueira 9, 2610-124 Amadora, Portugal
| | - Francisco Salgado
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| | - Luís Alves
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| |
Collapse
|
2
|
Tavares J, Paixão SM, Silva TP, Alves L. New Insights on Gordonia alkanivorans Strain 1B Surface-Active Biomolecules: Gordofactin Properties. Molecules 2024; 30:1. [PMID: 39795060 PMCID: PMC11720751 DOI: 10.3390/molecules30010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, Gordonia alkanivorans strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer. This study focuses on the characterization of the properties of the lipoglycopeptide BSs/BEs produced by strain 1B, henceforth referred to as gordofactin, to better understand its potential and future applications. Strain 1B was cultivated in a chemostat using fructose as a carbon source to stimulate gordofactin production, and different purification methods were tested. The most purified sample, designated as extracted gordofactin, after lyophilization, presented a specific emulsifying activity of 9.5 U/mg and a critical micelle concentration of 13.5 mg/L. FT-IR analysis revealed the presence of basic hydroxyl, carboxyl, ether, amine/amide functional groups, and alkyl aliphatic chains, which is consistent with its lipoglycopeptide nature (60% lipids, 19.6% carbohydrates, and 9% proteins). Gordofactin displayed remarkable stability and retained emulsifying activity across a broad range of temperatures (30 °C to 80 °C) and pH (pH 3-12). Moreover, a significant tolerance of gordofactin emulsifying activity (EA) to a wide range of NaCl concentrations (1 to 100 g/L) was demonstrated. Although with a great loss of EA in the presence of NaCl concentrations above 2.5%, gordofactin could still tolerate up to 100 g/L NaCl, maintaining about 16% of its initial EA for up to 7 days. Furthermore, gordofactin exhibited growth inhibition against both Gram-positive and Gram-negative bacteria, and it demonstrated concentration-dependent free radical scavenging activity for 2,2-diphenyl-1-picrylhydrazyl (IC50 ≈ 1471 mg/L). These promising features emphasize the robustness and potential of gordofactin as an eco-friendly BS/BE alternative to conventional surfactants/emulsifiers for different industrial applications.
Collapse
Affiliation(s)
- João Tavares
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
- RCM2+–Centro de Investigação em Gestão de Ativos e Engenharia de Sistemas, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Susana M. Paixão
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Tiago P. Silva
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Luís Alves
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
3
|
Silva TP, Alves L, Salgado F, Roseiro JC, Łukasik RM, Paixão SM. Ionic Liquids toward Enhanced Carotenoid Extraction from Bacterial Biomass. Molecules 2024; 29:4132. [PMID: 39274980 PMCID: PMC11397713 DOI: 10.3390/molecules29174132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Carotenoids are high added-value products primarily known for their intense coloration and high antioxidant activity. They can be extracted from a variety of natural sources, such as plants, animals, microalgae, yeasts, and bacteria. Gordonia alkanivorans strain 1B is a bacterium recognized as a hyper-pigment producer. However, due to its adaptations to its natural habitat, hydrocarbon-contaminated soils, strain 1B is resistant to different organic solvents, making carotenoid extraction through conventional methods more laborious and inefficient. Ionic liquids (ILs) have been abundantly shown to increase carotenoid extraction in plants, microalgae, and yeast; however, there is limited information regarding bacterial carotenoid extraction, especially for the Gordonia genus. Therefore, the main goal of this study was to evaluate the potential of ILs to mediate bacterial carotenoid extraction and develop a method to achieve higher yields with fewer pre-processing steps. In this context, an initial screening was performed with biomass of strain 1B and nineteen different ILs in various conditions, revealing that tributyl(ethyl)phosphonium diethyl phosphate (IL#18), combined with ethyl acetate (EAc) as a co-solvent, presented the highest level of carotenoid extraction. Afterward, to better understand the process and optimize the extraction results, two experimental designs were performed, varying the amounts of IL#18 and EAc used. These allowed the establishment of 50 µL of IL#18 with 1125 µL of EAc, for 400 µL of biomass (cell suspension with about 36 g/L), as the ideal conditions to achieve maximal carotenoid extraction. Compared to the conventional extraction method using DMSO, this novel procedure eliminates the need for biomass drying, reduces extraction temperatures from 50 °C to 22 ± 2 °C, and increases carotenoid extraction by 264%, allowing a near-complete recovery of carotenoids contained in the biomass. These results highlight the great potential of ILs for bacterial carotenoid extraction, increasing the process efficiency, while potentially reducing energy consumption, related costs, and emissions.
Collapse
Affiliation(s)
- Tiago P Silva
- LNEG-Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - Luís Alves
- LNEG-Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - Francisco Salgado
- LNEG-Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - José C Roseiro
- LNEG-Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - Rafał M Łukasik
- LNEG-Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
- Łukasiewicz Centre, Łukasiewicz Research Network, Research and Innovation Department, 19 Poleczki str., 02-822 Warsaw, Poland
| | - Susana M Paixão
- LNEG-Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
4
|
Anwer A, Shahzadi A, Nawaz H, Majeed MI, Alshammari A, Albekairi NA, Hussain MU, Amin I, Bano A, Ashraf A, Rehman N, Pallares RM, Akhtar N. Differentiation of different dibenzothiophene (DBT) desulfurizing bacteria via surface-enhanced Raman spectroscopy (SERS). RSC Adv 2024; 14:20290-20299. [PMID: 38932985 PMCID: PMC11200166 DOI: 10.1039/d4ra01735h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Fossil fuels are considered vital natural energy resources on the Earth, and sulfur is a natural component present in them. The combustion of fossil fuels releases a large amount of sulfur in the form of SO x in the atmosphere. SO x is the major cause of environmental problems, mainly air pollution. The demand for fuels with ultra-low sulfur is growing rapidly. In this aspect, microorganisms are proven extremely effective in removing sulfur through a process known as biodesulfurization. A major part of sulfur in fossil fuels (coal and oil) is present in thiophenic structures such as dibenzothiophene (DBT) and substituted DBTs. In this study, the identification and characterization of DBT desulfurizing bacteria (Chryseobacterium sp. IS, Gordonia sp. 4N, Mycolicibacterium sp. J2, and Rhodococcus sp. J16) based on their specific biochemical constituents were conducted using surface-enhanced Raman spectroscopy (SERS). By differentiating DBT desulfurizing bacteria, researchers can gain insights into their unique characteristics, thus leading to improved biodesulfurization strategies. SERS was used to differentiate all these species based on their biochemical differences and different SERS vibrational bands, thus emerging as a potential technique. Moreover, multivariate data analysis techniques such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to differentiate these DBT desulfurizing bacteria on the basis of their characteristic SERS spectral signals. For all these isolates, the accuracy, sensitivity, and specificity are above 90%, and an AUC (area under the curve) value of close to 1 was achieved for all PLS-DA models.
Collapse
Affiliation(s)
- Ayesha Anwer
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Aqsa Shahzadi
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Muhammad Umar Hussain
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS) Faisalabad 38000 Pakistan
| | - Itfa Amin
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS) Faisalabad 38000 Pakistan
| | - Aqsa Bano
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Ayesha Ashraf
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Nimra Rehman
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Nasrin Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS) Faisalabad 38000 Pakistan
| |
Collapse
|
5
|
Rhenals-Montoya P, Villamil L, Sánchez-Suárez J, Díaz L, Coy-Barrera E. Optimized carotenoid production and antioxidant capacity of Gordonia hongkongensis. Sci Prog 2024; 107:368504241253695. [PMID: 38801654 PMCID: PMC11135077 DOI: 10.1177/00368504241253695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The current emphasis within the cosmetic market on sustainable ingredients has heightened the exploration of new sources for natural, active components. Actinomycetota, recognized for producing pigments with bioactive potential, offer promising functional cosmetic ingredients. This study aimed to optimize pigment and antioxidant metabolite production from the Gordonia hongkongensis strain EUFUS-Z928 by implementing the Plackett-Burman experimental design and response surface methodology. Extracts derived from this strain exhibited no cytotoxic activity against human primary dermal fibroblast (HDFa, ATCC® PCS-201-012™, Primary Dermal Fibroblast; Normal, Human, Adult). Eight variables, including inoculum concentration, carbon and nitrogen source concentration, NaCl concentration, pH, incubation time, temperature, and stirring speed, were analyzed using the Plackett-Burman experimental design. Subsequently, factors significantly influencing pigment and antioxidant metabolite production, such as temperature, inoculum concentration, and agitation speed, were further optimized using response surface methodology and Box-Behnken design. The results demonstrated a substantial increase in absorbance (from 0.091 to 0.32), DPPH radical scavenging capacity (from 27.60% to 84.61%), and ABTS radical scavenging capacity (from 17.39% to 79.77%) compared to responses obtained in the isolation medium. The validation of the mathematical model accuracy exceeded 90% for all cases. Furthermore, liquid chromatography coupled with mass spectrometry (LC-MS) facilitated the identification of compounds potentially responsible for enhanced pigment production and antioxidant capacity in extracts derived from G. hongkongensis. Specifically, six carotenoids, red-orange pigments with inherent antioxidant capacity, were identified as the main enhanced compounds. This comprehensive approach effectively optimized the culture conditions and medium of a G. hongkongensis strain, resulting in enhanced carotenoid production and antioxidant capacity. Beyond identifying bioactive compounds and their potential cosmetic applications, this study offers insights into the broader industrial applicability of these extracts. It underscores the potential of G. hongkongensis and hints at the future utilization of other untapped sources of rare actinomycetes within the industry.
Collapse
Affiliation(s)
- Paula Rhenals-Montoya
- Master in Process Design and Management, School of Engineering, Universidad de La Sabana, Chia, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Luisa Villamil
- Agroindustrial Production Research Group, Doctorate of Biosciences, School of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Jeysson Sánchez-Suárez
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Luis Díaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chia, Colombia
- Agroindustrial Production Research Group, Doctorate of Biosciences, School of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá, Colombia
| |
Collapse
|
6
|
Silva TP, Paixão SM, Tavares J, Paradela F, Crujeira T, Roseiro JC, Alves L. Streamlining the biodesulfurization process: development of an integrated continuous system prototype using Gordonia alkanivorans strain 1B. RSC Adv 2024; 14:725-742. [PMID: 38173596 PMCID: PMC10758933 DOI: 10.1039/d3ra07405f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Biodesulfurization is a biotechnological process that uses microorganisms as biocatalysts to actively remove sulfur from fuels. It has the potential to be cleaner and more efficient than the current industrial process, however several bottlenecks have prevented its implementation. Additionally, most works propose models based on direct cultivation on fuel, or batch production of biocatalysts followed by a processing step before application to batch biodesulfurization, which are difficult to replicate at a larger scale. Thus, there is a need for a model that can be adapted to a refining process, where fuel is being continuously produced to meet consumer needs. The main goal of this work was to develop the first bench-scale continuous biodesulfurization system that integrates biocatalyst production, biodesulfurization and fuel separation, into a single continuous process, taking advantage of the method for the continuous production of the biodesulfurization biocatalysts previously established. This system eliminates the need to process the biocatalysts and facilitates fuel separation, while mitigating some of the process bottlenecks. First, using the bacterium Gordonia alkanivorans strain 1B, continuous culture conditions were optimized to double biocatalyst production, and the produced biocatalysts were applied in batch biphasic biodesulfurization assays for a better understanding of the influence of different factors. Then, the novel integrated system was developed and evaluated using a model fuel (n-heptane + dibenzothiophene) in continuous biodesulfurization assays. With this system strain 1B surpassed its highest biodesulfurization rate, reaching 21 μmol h-1 g-1. Furthermore, by testing a recalcitrant model fuel, composed of n-heptane with dibenzothiophene and three alkylated derivatives (with 109 ppm of sulfur), 72% biodesulfurization was achieved by repeatedly passing the same fuel through the system, maintaining a constant response throughout sequential biodesulfurization cycles. Lastly, the system was also tested with real fuels (used tire/plastic pyrolysis oil; sweet and sour crude oils), revealing increased desulfurization activity. These results highlight the potential of the continuous biodesulfurization system to accelerate the transition from bench to commercial scale, contributing to the development of biodesulfurization biorefineries, centered on the valorization of sulfur-rich residues/biomasses for energy production.
Collapse
Affiliation(s)
- Tiago P Silva
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Susana M Paixão
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - João Tavares
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Filipe Paradela
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Teresa Crujeira
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - José C Roseiro
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Luís Alves
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| |
Collapse
|
7
|
Frantsuzova E, Bogun A, Vetrova A, Delegan Y. Methods of Identifying Gordonia Strains in Clinical Samples. Pathogens 2022; 11:pathogens11121496. [PMID: 36558832 PMCID: PMC9786905 DOI: 10.3390/pathogens11121496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gordonia spp. are members of the family Gordoniacea in the suborder Corynebacteriales; their habitat, in most cases, is soil. Many representatives of this genus are human or veterinary pathogens. The main cause of the lack of a standardized approach to dealing with infections caused by Gordonia is their erroneous identification and little information regarding their susceptibility to antimicrobial drugs. This review presents the most common methods for identifying Gordonia strains, including modern approaches for identifying a species. The main prospects and future directions of this field of knowledge are briefly presented.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- Correspondence:
| |
Collapse
|
8
|
Characterization and Bioactive Potential of Carotenoid Lutein from Gordonia rubripertncta GH-1 Isolated from Traditional Pixian Douban. Foods 2022; 11:foods11223649. [PMID: 36429243 PMCID: PMC9689138 DOI: 10.3390/foods11223649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The characterization and bioactive properties of carotenoid produced by Gordonia rubripertincta GH-1 originating from Pixian Douban (PXDB), the Chinese traditional condiment, was investigated. The produced and purified yellow pigment was characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transformed infrared (FTIR), nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS), and was identified as carotenoid lutein. Additionally, the bioactive activity of lutein from G. rubripertincta GH-1 was evaluated by measuring the free radical scavenging capacity in vitro and feeding zebrafish lutein through aqueous solution. The results showed that the carotenoid lutein had strong antioxidant capacity and a protective effect on zebrafish eye cells, which could inhibit the apoptosis of eye cells in a concentration dependent manner. The results suggested that carotenoid lutein from G. rubripertincta GH-1 could be utilized as a potential source of natural antioxidants or functional additives for food/pharmaceutical industries.
Collapse
|
9
|
Orlandi VT, Martegani E, Giaroni C, Baj A, Bolognese F. Bacterial pigments: A colorful palette reservoir for biotechnological applications. Biotechnol Appl Biochem 2022; 69:981-1001. [PMID: 33870552 PMCID: PMC9544673 DOI: 10.1002/bab.2170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
Synthetic derivatives are currently used instead of pigments in many applicative fields, from food to feed, from pharmaceutical to diagnostic, from agronomy to industry. Progress in organic chemistry allowed to obtain rather cheap compounds covering the whole color spectrum. However, several concerns arise from this chemical approach, as it is mainly based on nonrenewable resources such as fossil oil, and the toxicity or carcinogenic properties of products and/or precursors may be harmful for personnel involved in the productive processes. In this scenario, microorganisms and their pigments represent a colorful world to discover and reconsider. Each living bacterial strain may be a source of secondary metabolites with peculiar functions. The aim of this review is to link the physiological role of bacterial pigments with their potential use in different biotechnological fields. This enormous potential supports the big challenge for the development of strategies useful to identify, produce, and purify the right pigment for the desired application. At the end of this ideal journey through the world of bacterial pigments, the attention will be focused on melanin compounds, whose production relies upon different techniques ranging from natural producers, heterologous hosts, or isolated enzymes. In a green workflow, the microorganisms represent the starting and final point of pigment production.
Collapse
Affiliation(s)
| | - Eleonora Martegani
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| | - Cristina Giaroni
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Andreina Baj
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Fabrizio Bolognese
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| |
Collapse
|
10
|
A New Biosurfactant/Bioemulsifier from Gordonia alkanivorans Strain 1B: Production and Characterization. Processes (Basel) 2022. [DOI: 10.3390/pr10050845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biosurfactants and bioemulsifiers (BS/BE) are naturally synthesized molecules, which can be used as alternatives to traditional detergents. These molecules are commonly produced by microorganisms isolated from hydrocarbon-rich environments. Gordonia alkanivorans strain 1B was originally found in such an environment, however little was known about its abilities as a BS/BE producer. The goal of this work was to access the potential of strain 1B as a BS/BE producer and perform the initial characterization of the produced compounds. It was demonstrated that strain 1B was able to synthesize lipoglycoprotein compounds with BS/BE properties, both extracellularly and adhered to the cells, without the need for a hydrophobic inducer, producing emulsion in several different hydrophobic phases. Using a crude BS/BE powder, the critical micelle concentration was determined (CMC = 16.94 mg/L), and its capacity to reduce the surface tension to a minimum of 35.63 mN/m was demonstrated, surpassing many commercial surfactants. Moreover, after dialysis, emulsification assays revealed an activity similar to that of Triton X-100 in almond and sunflower oils. In benzene, the E24 value attained was 83.45%, which is 30% greater than that of the commercial alternative. The results obtained highlight for the presence of promising novel BS/BE produced by strain 1B.
Collapse
|
11
|
P. Silva T, M. Paixão S, S. Fernandes A, C. Roseiro J, Alves L. New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gordonia alkanivorans strain 1B is a desulfurizing bacterium and a hyper-pigment producer. Most carotenoid optimization studies have been performed with light, but little is still known on how carbon/sulfur-source concentrations influence carotenoid production under darkness. In this work, a surface response methodology based on a two-factor Doehlert distribution (% glucose in a glucose/fructose 10 g/L mixture; sulfate concentration) was used to study carotenoid and biomass production without light. These responses were then compared to those previously obtained under light. Moreover, carbon consumption was also monitored, and different metabolic parameters were further calculated. The results indicate that both light and glucose promote slower growth rates, but stimulate carotenoid production and carbon conversion to carotenoids and biomass. Fructose induces higher growth rates, and greater biomass production at 72 h; however, its presence seems to inhibit carotenoid production. Moreover, although at a much lower yield than under light, results demonstrate that under darkness the highest carotenoid production can be achieved with 100% glucose (10 g/L), ≥27 mg/L sulfate, and high growth time (>216 h). These results give a novel insight into the metabolism of strain 1B, highlighting the importance of culture conditions optimization to increase the process efficiency for carotenoid and/or biomass production.
Collapse
|
12
|
Tavares J, Alves L, Silva TP, Paixão SM. Design and validation of an expeditious analytical method to quantify the emulsifying activity during biosurfactants/bioemulsifiers production. Colloids Surf B Biointerfaces 2021; 208:112111. [PMID: 34560442 DOI: 10.1016/j.colsurfb.2021.112111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Biosurfactants (BS) and bioemulsifiers (BE) are amphiphilic molecules that are produced by a wide range of microorganisms. Although the chemical composition of BS and BE is different, both BS/BE have recognized emulsifying properties, which are the focus of this study. Herein, a rapid and simple analytical method to quantify the emulsifying activity (EA) of a product produced by the actinomycete Gordonia alkanivorans strain 1B (BS/BE), which exhibits emulsifying properties, was developed. The analytical approach was based on the ability of a BS/BE solution to form a stable emulsion when mixed with n-heptane. So, using 4 mL screw cap glass tubes (10 × 75 mm, ND10 caps with PTFE septum), the EA was assessed by adding 1 mL of n-heptane to 1 mL of an aqueous solution containing the test product, mix by vortexing at high speed (2 min) and place the tube in an upright stable position for 10 min before analyzing. A set of emulsification tests with increasing volumes of test product solutions was carried out until 100% emulsion was obtained in the organic phase. One emulsification unit was defined as the minimum volume of product (Volmin of emulsifier/surfactant, up to 1 mL) needed to form and maintain 100% emulsion in the organic phase. The corresponding emulsifying activity value is presented in U/mL, and it is calculated as: EA (product) = 1 U/Volmin (mL). Further validation by testing several synthetic surfactants and industrial/domestic dishwashing detergents, in parallel with the bacterial crude BS/BE, towards emulsifying activity determination (U/mL) was performed demonstrating the wide range of the method applicability. Moreover, the specific emulsifying activity for each product tested was estimated though correlation analysis (linear regression) between volumetric emulsifying activity (U/mL) and product concentration (g/L). Indeed, this new analytical approach to quantify the emulsifying activity is accurate and reproducible, and consequently it can be a promising tool to apply in screening/monitorization studies on BS/BE production enabling reliable comparisons.
Collapse
Affiliation(s)
- João Tavares
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Luís Alves
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| | - Tiago P Silva
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Susana M Paixão
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| |
Collapse
|
13
|
Cassarini M, Besaury L, Rémond C. Valorisation of wheat bran to produce natural pigments using selected microorganisms. J Biotechnol 2021; 339:81-92. [PMID: 34364925 DOI: 10.1016/j.jbiotec.2021.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
Pigments are compounds with highly diverse structures and wide uses, which production is increasing worldwide. An eco-friendly method of bioproduction is to use the ability of some microorganisms to ferment on renewable carbon sources. Wheat bran (WB) is a cheap and abundant lignocellulosic co-product of low recalcitrance to biological conversion. Microbial candidates with theoretical ability to degrade WB were first preselected using specific databases. The microorganisms were Ashbya gossypii (producing riboflavin), Chitinophaga pinensis (producing flexirubin), Chromobacterium vaccinii (violacein) and Gordonia alkanivorans (carotenoids). Growth was shown for each on minimal salt medium supplemented with WB at 5 g.L-1. Activities of the main enzymes consuming WB were measured, showing leucine amino-peptidase (up to 8.45 IU. mL-1) and β-glucosidase activities (none to 6.44 IU. mL-1). This was coupled to a FTIR (Fourier Transform Infra-Red) study of the WB residues that showed main degradation of the WB protein fraction for C. pinensis, C. vaccinii and G. alkanivorans. Production of the pigments on WB was assessed for all the strains except Ashbya, with values of production reaching up to 1.47 mg.L-1. The polyphasic approach used in this study led to a proof of concept of pigment production from WB as a cheap carbon source.
Collapse
Affiliation(s)
- Mathieu Cassarini
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| | - Ludovic Besaury
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| |
Collapse
|
14
|
Silva TP, Alves L, Paixão SM. Effect of dibenzothiophene and its alkylated derivatives on coupled desulfurization and carotenoid production by Gordonia alkanivorans strain 1B. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110825. [PMID: 32501236 DOI: 10.1016/j.jenvman.2020.110825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, the production of green transportation fuels is essential for a healthy life and environment. Effective and complete removal of organosulfur recalcitrant compounds from fuel oils is crucial to meet the stringent requirements of sulfur standards. However, the industry's solution (Hydrodesulfurization, HDS) is not effective in the removal of complex sulfur heterocyclic hydrocarbons. Thus, the development of more efficient and ecofriendly/sustainable desulfurization methods is critical, as either an alternative or a complement to HDS, foreseeing the production of ultra-low sulfur fuels (ULSF). Among the desulfurization techniques available, microbial desulfurization of organosulfur hydrocarbons (biodesulfurization, BDS) is attracting great attention. BDS is carried out at mild operation conditions, making it energetically cheaper and more ecofriendly, since it does not require hydrogen and produces far less greenhouse gases emission than HDS. In this context, the behavior of Gordonia alkanivorans strain 1B, a desulfurizing bacterium and hyper-pigment producer, was evaluated in the presence of four sulfur sources common in fuel oils: dibenzothiophene (DBT); 4-mDBT; 4,6-dmDBT and 4,6-deDBT (single/mixed), in terms of both desulfurization rate and overall carotenoid production. Simultaneously, the influence of the carbon source used (fructose vs glucose) on the overall effectiveness of the coupled bioprocesses was also assessed. The results obtained highlight the potential of strain 1B to desulfurize all the tested recalcitrant compounds and simultaneously produce carotenoids. However, the highest BDS values were observed for 4,6-deDBT (5.75 μmol/g (DCW)/h) and for the mix of DBTs (5.20 μmol/g (DCW)/h), when fructose was used as carbon source. Indeed, when the mixture of DBTs ("model oil surrogate") was desulfurized by cells growing in fructose both desulfurization rate and total pigments amount were higher than those observed for glucose growing cells. Moreover, under these conditions, the strain 1B was able to produce high added-value carotenoids, namely astaxanthin, lutein and canthaxanthin. Hence, these results are promising when aiming to achieve a scale-up scenario. In fact, the inclusion of the production of high added-value products within a BDS process targeting ULSF may be a sustainable way to turn its scale-up economically viable.
Collapse
Affiliation(s)
- Tiago P Silva
- LNEG - Instituto Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Luís Alves
- LNEG - Instituto Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| | - Susana M Paixão
- LNEG - Instituto Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| |
Collapse
|
15
|
Pacheco M, Paixão SM, Silva TP, Alves L. On the road to cost-effective fossil fuel desulfurization byGordonia alkanivoransstrain 1B. RSC Adv 2019; 9:25405-25413. [PMID: 35530089 PMCID: PMC9070030 DOI: 10.1039/c9ra03601f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/07/2019] [Indexed: 11/21/2022] Open
Abstract
Biodesulfurization (BDS) is an ecofriendly process that uses microorganisms to efficiently remove sulfur from fossil fuels. To make the BDS process economically competitive with the deep hydrodesulfurization process, which is currently used in the oil industry, it is necessary to improve several factors. One crucial limitation to be overcome, common within many other biotechnological processes, is the cost of the culture medium. Therefore, an important line of work to make BDS scale-up less costly is the optimization of the culture medium composition aiming to reduce operating expenses and maximize biocatalyst production. In this context, the main goal of this study was on the minimization of inorganic key components of sulfur-free mineral (SFM) medium in order to get the maximal production of efficient desulfurizing biocatalysts. Hence, a set of assays was carried out to develop an optimal culture medium containing minimal amounts of nitrogen (N) and magnesium (Mg) sources and trace elements solution (TES). These assays allowed the design of a SFMM (SFM minimum) medium containing 85% N-source, 25% Mg-source and 25% TES. Further validation consisted of testing this minimized medium using two carbon sources: the commercial C-source (glucose + fructose) versus Jerusalem artichoke juice (JAJ) as a cheaper alternative. SFMM medium allowed microbial cells to almost duplicate their specific desulfurization rate (q2-HBP) for both tested C-sources, namely from 2.15 to 3.39 μmoL g−1 (DCW) h−1 for Fru + Glu and from 1.91 to 3.58 μmoL g−1 (DCW) h−1 for JAJ, achieving a similar net 2-hydroxybiphenyl produced per g of consumed sugar (∼17 μmoL g−1). These results point out the great advantage of using cheaper culture medium that in addition enhances the bioprocess effectiveness, paving the way to a sustainable scale-up for fossil fuel BDS. The utilization of desulfurizing microorganisms that can grow in low nutrient culture media without vitamins and other growth promoters (e.g. yeast extract, peptone) is an advantage for BDS upgrade since it may reduce the biocatalyst production costs significantly![]()
Collapse
Affiliation(s)
- Marta Pacheco
- LNEG – Instituto Nacional de Energia e Geologia
- IP
- Unidade de Bioenergia
- Portugal
| | - Susana M. Paixão
- LNEG – Instituto Nacional de Energia e Geologia
- IP
- Unidade de Bioenergia
- Portugal
| | - Tiago P. Silva
- LNEG – Instituto Nacional de Energia e Geologia
- IP
- Unidade de Bioenergia
- Portugal
| | - Luís Alves
- LNEG – Instituto Nacional de Energia e Geologia
- IP
- Unidade de Bioenergia
- Portugal
| |
Collapse
|