1
|
Almeida PDS, de Menezes CA, Camargo FP, Sakamoto IK, Lovato G, Rodrigues JAD, Varesche MBA, Silva EL. Biomethane recovery through co-digestion of cheese whey and glycerol in a two-stage anaerobic fluidized bed reactor: Effect of temperature and organic loading rate on methanogenesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117117. [PMID: 36584460 DOI: 10.1016/j.jenvman.2022.117117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion for CH4 recovery in wastewater treatment has been carried out with different strategies to increase process efficiency, among which co-digestion and the two-stage process can be highlighted. In this context, this study aimed at evaluating the co-digestion of cheese whey and glycerol in a two-stage process using fluidized bed reactors, verifying the effect of increasing the organic loading rate (OLR) (2-20 g-COD.L-1.d-1) and temperature (thermophilic and mesophilic) in the second stage methanogenic reactor. The mesophilic methanogenic reactor (R-Meso) (mean temperature of 22 °C) was more tolerant to high OLR and its best performance was at 20 g-COD.L-1.d-1, resulting in methane yield (MY) and methane production (MPR) of 273 mL-CH4.g-COD-1 and 5.8 L-CH4.L-1.d-1 (with 67% of CH4), respectively. Through 16S rRNA gene massive sequencing analysis, a greater diversity of microorganisms was identified in R-Meso than in R-Thermo (second stage methanogenic reactor, 55 °C). Firmicutes was the phyla with higher relative abundance in R-Thermo, while in R-Meso the most abundant ones were Proteobacteria and Bacteroidetes. Regarding the Archaea domain, a predominance of hydrogenotrophic microorganisms could be observed, being the genera Methanothermobacter and Methanobacterium the most abundant in R-Thermo and R-Meso, respectively. The two-stage system composed with a thermophilic acidogenic reactor + R-Meso was more adequate for the co-digestion of cheese whey and glycerol than the single-stage process, promoting increases of up to 47% in the energetic yield (10.3 kJ.kg-COD-1) and 14% in organic matter removal (90.5%).
Collapse
Affiliation(s)
- Priscilla de Souza Almeida
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, Zip Code 13.565-905, São Carlos, SP, Brazil
| | - Camila Aparecida de Menezes
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Giovanna Lovato
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano Do Sul, SP, Brazil
| | - José Alberto Domingues Rodrigues
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano Do Sul, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, Zip Code 13.565-905, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Gadow SI, Hussein H, Abdelhadi AA, Hesham AEL. Anaerobic Biotechnology: Implementations and New Advances. MODERN APPROACHES IN WASTE BIOREMEDIATION 2023:165-180. [DOI: 10.1007/978-3-031-24086-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Dahiya S, Chatterjee S, Sarkar O, Mohan SV. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 321:124354. [PMID: 33277136 DOI: 10.1016/j.biortech.2020.124354] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Global urbanization has resulted in amplified energy and material consumption with simultaneous waste generation. Current energy demand is mostly fulfilled by finite fossil reserves, which has critical impact on the environment and thus, there is a need for carbon-neutral energy. In this view, biohydrogen (bio-H2) is considered suitable due to its potential as a green and dependable carbon-neutral energy source in the emerging 'Hydrogen Economy'. Bio-H2 production by dark fermentation of biowaste/biomass/wastewater is gaining significant attention. However, bio-H2production still holds critical challenges towards scale-up with reference to process limitations and economic viabilities. This review illustrates the status of dark-fermentation process in the context of process sustainability and achieving commercial success. The review also provides an insight on various process integrations for maximum resource recovery including closed loop biorefinery approach towards the accomplishment of carbon neutral H2 production.
Collapse
Affiliation(s)
- Shikha Dahiya
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sulogna Chatterjee
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Omprakash Sarkar
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|