1
|
Gharios R, Li A, Kopyeva I, Francis RM, DeForest CA. One-Step Purification and N-Terminal Functionalization of Bioactive Proteins via Atypically Split Inteins. Bioconjug Chem 2024; 35:750-757. [PMID: 38815180 PMCID: PMC11262789 DOI: 10.1021/acs.bioconjchem.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Site-specific installation of non-natural functionality onto proteins has enabled countless applications in biotechnology, chemical biology, and biomaterials science. Though the N-terminus is an attractive derivatization location, prior methodologies targeting this site have suffered from low selectivity, a limited selection of potential chemical modifications, and/or challenges associated with divergent protein purification/modification steps. In this work, we harness the atypically split VidaL intein to simultaneously N-functionalize and purify homogeneous protein populations in a single step. Our method─referred to as VidaL-tagged expression and protein ligation (VEPL)─enables modular and scalable production of N-terminally modified proteins with native bioactivity. Demonstrating its flexibility and ease of use, we employ VEPL to combinatorially install 4 distinct (multi)functional handles (e.g., biotin, alkyne, fluorophores) to the N-terminus of 4 proteins that span three different classes: fluorescent (Enhanced Green Fluorescent Protein, mCherry), enzymatic (β-lactamase), and growth factor (epidermal growth factor). Moving forward, we anticipate that VEPL's ability to rapidly generate and isolate N-modified proteins will prove useful across the growing fields of applied chemical biology.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Annabella Li
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Ryan M Francis
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98105, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98105, United States
- Institute for Protein Design, University of Washington, Seattle ,Washington 98105, United States
| |
Collapse
|
2
|
Fages-Lartaud M, Mueller Y, Elie F, Courtade G, Hohmann-Marriott MF. Standard Intein Gene Expression Ramps (SIGER) for Protein-Independent Expression Control. ACS Synth Biol 2023; 12:1058-1071. [PMID: 36920366 PMCID: PMC10127266 DOI: 10.1021/acssynbio.2c00530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Coordination of multigene expression is one of the key challenges of metabolic engineering for the development of cell factories. Constraints on translation initiation and early ribosome kinetics of mRNA are imposed by features of the 5'UTR in combination with the start of the gene, referred to as the "gene ramp", such as rare codons and mRNA secondary structures. These features strongly influence the translation yield and protein quality by regulating the ribosome distribution on mRNA strands. The utilization of genetic expression sequences, such as promoters and 5'UTRs in combination with different target genes, leads to a wide variety of gene ramp compositions with irregular translation rates, leading to unpredictable levels of protein yield and quality. Here, we present the Standard Intein Gene Expression Ramp (SIGER) system for controlling protein expression. The SIGER system makes use of inteins to decouple the translation initiation features from the gene of a target protein. We generated sequence-specific gene expression sequences for two inteins (DnaB and DnaX) that display defined levels of protein expression. Additionally, we used inteins that possess the ability to release the C-terminal fusion protein in vivo to avoid the impairment of protein functionality by the fused intein. Overall, our results show that SIGER systems are unique tools to mitigate the undesirable effects of gene ramp variation and to control the relative ratios of enzymes involved in molecular pathways. As a proof of concept of the potential of the system, we also used a SIGER system to express two difficult-to-produce proteins, GumM and CBM73.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Yasmin Mueller
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Florence Elie
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Gaston Courtade
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway.,United Scientists CORE (Limited), Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
3
|
Vedarethinam V, Jeevanandam J, Acquah C, Danquah MK. Magnetic Nanoparticles for Protein Separation and Purification. Methods Mol Biol 2023; 2699:125-159. [PMID: 37646997 DOI: 10.1007/978-1-0716-3362-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.
Collapse
Affiliation(s)
- Vadanasundari Vedarethinam
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, USA.
| |
Collapse
|
4
|
SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly. Nat Commun 2022; 13:3714. [PMID: 35764623 PMCID: PMC9240080 DOI: 10.1038/s41467-022-31193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Proteins can be empowered via SpyTag for anchoring and nanoassembly, through covalent bonding to SpyCatcher partners. Here we generate a switchable version of SpyCatcher, allowing gentle purification of SpyTagged proteins. We introduce numerous histidines adjacent to SpyTag’s binding site, giving moderate pH-dependent release. After phage-based selection, our final SpySwitch allows purification of SpyTag- and SpyTag003-fusions from bacterial or mammalian culture by capture at neutral pH and release at pH 5, with purity far beyond His-tag methods. SpySwitch is also thermosensitive, capturing at 4 °C and releasing at 37 °C. With flexible choice of eluent, SpySwitch-purified proteins can directly assemble onto multimeric scaffolds. 60-mer multimerization enhances immunogenicity and we use SpySwitch to purify receptor-binding domains from SARS-CoV-2 and 11 other sarbecoviruses. For these receptor-binding domains we determine thermal resilience (for mosaic vaccine development) and cross-recognition by antibodies. Antibody EY6A reacts across all tested sarbecoviruses, towards potential application against new coronavirus pandemic threats. The SpyCatcher-SpyTag system allows protein anchoring and nanoassembly. Here, the authors engineer SpySwitch, a dually switchable Catcher which allows gentle purification of SpyTagged proteins prior to downstream applications such as the assembly of virus-like particles.
Collapse
|
5
|
Xia HF, Luo JP, Yu SR, Zhou TJ. Modification of C-Segment of Cfa DnaE Split Intein for Improving Clean-in-Place in Chromatography Process. Biotechnol Prog 2022; 38:e3266. [PMID: 35488391 DOI: 10.1002/btpr.3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
This research focuses on the construction of an affinity purification system based on Cfa DnaE split intein. Cfa DnaE intein is an artificially constructed intein with the advantages of a fast cleavage reaction and good stability. In a previous study, a purification system that uses Cfa intein as a tag was constructed, the separation of the target protein and the tag during the purification process was completed, and the purity of the purified target protein reached 98.21%. Guided by molecular docking results, we identified flexible regions in the split intein and inserted several glycines into the protein to decrease the stability of the Cfa IC , thereby improving the regenerability of the IN media. Inserting 6 glycines between amino acids 14 and 15 of IC improved the regeneration rate of IC -GFP on the column to approximately 96%.
Collapse
Affiliation(s)
- Hai-Feng Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Jiu-Pei Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shi-Rui Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ting-Jun Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Nanda A, Nasker SS, Kushwaha AK, Ojha DK, Dearden AK, Nayak SK, Nayak S. Gold Nanoparticles Augment N-Terminal Cleavage and Splicing Reactions in Mycobacterium tuberculosis SufB. Front Bioeng Biotechnol 2021; 9:773303. [PMID: 35004641 PMCID: PMC8735848 DOI: 10.3389/fbioe.2021.773303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Protein splicing is a self-catalyzed event where the intervening sequence intein cleaves off, joining the flanking exteins together to generate a functional protein. Attempts have been made to regulate the splicing rate through variations in temperature, pH, and metals. Although metal-regulated protein splicing has been more captivating to researchers, metals were shown to only inhibit splicing reactions that confine their application. This is the first study to show the effect of nanoparticles (NPs) on protein splicing. We found that gold nanoparticles (AuNPs) of various sizes can increase the splicing efficiency by more than 50% and the N-terminal cleavage efficiency by more than 45% in Mycobacterium tuberculosis SufB precursor protein. This study provides an effective strategy for engineering splicing-enhanced intein platforms. UV-vis absorption spectroscopy, isothermal titration calorimetry (ITC), and transmission electron microscopy (TEM) confirmed AuNP interaction with the native protein. Quantum mechanics/molecular mechanics (QM/MM) analysis suggested a significant reduction in the energy barrier at the N-terminal cleavage site in the presence of gold atom, strengthening our experimental evidence on heightened the N-terminal cleavage reaction. The encouraging observation of enhanced N-terminal cleavage and splicing reaction can have potential implementations from developing a rapid drug delivery system to designing a contemporary protein purification system.
Collapse
Affiliation(s)
- Ananya Nanda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Sourya Subhra Nasker
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Anoop K. Kushwaha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Deepak Kumar Ojha
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Albert K. Dearden
- Departments of Physics and Astronomy, College of Arts and Sciences, University of South Carolina, Columbia, SC, United States
| | - Saroj K. Nayak
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Sasmita Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|