1
|
Kobayashi Y, Li Q, Ushimaru K, Hirota M, Morita T, Fukuoka T. Updated component analysis method for naturally occurring sophorolipids from Starmerella bombicola. Appl Microbiol Biotechnol 2024; 108:296. [PMID: 38607413 PMCID: PMC11009742 DOI: 10.1007/s00253-024-13138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Sophorolipids (SLs) are promising glycolipid biosurfactants as they are easily produced and functional. SLs from microorganisms are comprised of mixtures of multiple derivatives that have different structures and properties, including well-known acidic and lactonic SL (ASLs and LSLs, respectively). In this study, we established a method for analyzing all SL derivatives in the products of Starmerella bombicola, a typical SL-producing yeast. Detailed component analyses of S. bombicola products were carried out using reversed-phase high-performance liquid chromatography and mass spectrometry. Methanol was used as the eluent as it is a good solvent for all SL derivatives. With this approach, it was possible to not only quantify the ratio of the main components of ASL, LSL, and SL glycerides but also confirm trace components such as SL mono-glyceride and bola-form SL (sophorose at both ends); notably, this is the first time these components have been isolated and identified successfully in naturally occurring SLs. In addition, our results revealed a novel SL derivative in which a fatty acid is bonded in series to the ASL, which had not been reported previously. Using the present analysis method, it was possible to easily track compositional changes in the SL components during culture. Our results showed that LSL and ASL are produced initially and that SL glycerides accumulate from the middle stage during the fermentation process. KEY POINTS: • An easy and detailed component analysis method for sophorolipids (SLs) is introduced. • Multiple SL derivatives were identified different from known SLs. • A novel hydrophobic acidic SL was isolated and characterized.
Collapse
Affiliation(s)
- Yosuke Kobayashi
- Allied Carbon Solutions Co., Ltd., 847-1 Ozuwa, Numazu, Shizuoka, 410-0873, Japan
| | - Qiushi Li
- Allied Carbon Solutions Co., Ltd., 847-1 Ozuwa, Numazu, Shizuoka, 410-0873, Japan
| | - Kazunori Ushimaru
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Makoto Hirota
- Allied Carbon Solutions Co., Ltd., 847-1 Ozuwa, Numazu, Shizuoka, 410-0873, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
2
|
Xu F, Chen Y, Zou X, Chu J, Tian X. Precise fermentation coupling with simultaneous separation strategy enables highly efficient and economical sophorolipids production. BIORESOURCE TECHNOLOGY 2023; 388:129719. [PMID: 37678650 DOI: 10.1016/j.biortech.2023.129719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Sophorolipids (SLs) represent highly promising biosurfactants. However, its widespread production and application encounter obstacles due to the significant costs involved. Here, an intelligent and precise regulation strategy was elucidated for the fermentation process coupled with in-situ separation production mode, to achieve cost-effective SLs production. Firstly, a mechanism-assisted data-driven model was constructed for "on-demand feeding of cells". Moreover, a strategy of step-wise oxygen supply regulation based on the demand for cell metabolic capacity was developed, which accomplished "on-demand oxygen supply of cells", to optimize the control of energy consumption. Finally, a systematic approach was implemented by integrating a semi-continuous fermentation mode with in-situ separation technology for SLs production. This strategy enhanced SLs productivity and yield, reaching 2.30 g/L/h and 0.57 g/g, respectively. These values represented a 40.2% and 18.7% increase compared to fed-batch fermentation. Moreover, the concentration of crude SLs after separation reached 793.12 g/L, facilitating downstream separation and purification processes.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Khanna A, Handa S, Rana S, Suttee A, Puri S, Chatterjee M. Biosurfactant from Candida: sources, classification, and emerging applications. Arch Microbiol 2023; 205:149. [PMID: 36995448 DOI: 10.1007/s00203-023-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
Biosurfactants are surface-active molecules that are synthesized by many microorganisms like fungi, bacteria, and yeast. These molecules are amphiphilic in nature, possessing emulsifying ability, detergency, foaming, and surface-activity like characteristics. Yeast species belongs to the genus Candida has gained globally enormous interest because of the diverse properties of biosurfactants produced by theme. In contrast to synthetic surfactants, biosurfactants are claimed to be biodegradable and non-toxic which labels them as a potent industrial compound. Biosurfactants produced by this genus are reported to possess certain biological activities, such as anticancer and antiviral activities. They also have potential industrial applications in bioremediation, oil recovery, agricultural, pharmaceutical, biomedical, food, and cosmetic industries. Various species of Candida have been recognized as biosurfactant producers, including Candida petrophilum, Candida bogoriensis, Candida antarctica, Candida lipolytica, Candida albicans, Candida batistae, Candida albicans, Candida sphaerica, etc. These species produce various forms of biosurfactants, such as glycolipids, lipopeptides, fatty acids, and polymeric biosurfactants, which are distinct according to their molecular weights. Herein, we provide a detailed overview of various types of biosurfactants produced by Candida sp., process optimization for better production, and the latest updates on the applications of these biosurfactants.
Collapse
Affiliation(s)
- Archna Khanna
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Shristi Handa
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Samriti Rana
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Puri
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India
| | - Mary Chatterjee
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Sector 25, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Madankar CS, Borde PK. Review on sophorolipids – a promising microbial bio-surfactant. TENSIDE SURFACT DET 2023. [DOI: 10.1515/tsd-2022-2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
Surfactants are amphiphilic molecules used primarily for cleaning. Petroleum-based surfactants have a high production rate, but are non-biodegradable and destructive to the environment. Environmentally friendly biosurfactants are therefore becoming increasingly important. In addition to not being toxic; they are environmentally safe and mild to the skin. Depending on their structure, there are different types of biosurfactants. One of the types are the glycolipids, they are low molecular weight biosurfactants, and consist of sophorolipids. Sophorolipids are getting more attention as alternative to petroleum-based surfactants due to excellent stability at various pH levels, temperatures, and salinities. In addition to being anti-microbial, they have excellent wetting and foaming abilities and act as emulsifiers. There are numerous applications of sophorolipids in food, agriculture, biomedicine, cosmetics and personal care.
Collapse
Affiliation(s)
- Chandu S. Madankar
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology , Mumbai , India
| | - Priti K. Borde
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology , Mumbai , India
| |
Collapse
|
5
|
Nooman MU, Al-Kashef AS, Rashad MM, Khattab AENA, Ahmed KA, Abbas SS. Sophorolipids produced by Yarrowia lipolytica grown on Moringa oleifera oil cake protect against acetic acid-induced colitis in rats: impact on TLR-4/p-JNK/NFκB-p65 pathway. J Pharm Pharmacol 2023; 75:544-558. [PMID: 36680771 DOI: 10.1093/jpp/rgac101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Toll-like receptor-4 (TLR-4) activation plays a major role in triggering oxidative stress (OS) and inflammation implicated in the pathogenesis of ulcerative colitis (UC). Due to sophorolipids (SLs) antioxidant and anti-inflammatory properties, they are interestingly becoming more valued for their potential effectiveness in treating a variety of diseases. This study was designed to explore the effect of SLs produced by microbial conversion of Moringa oleifera oil cake using isolated yeast Yarrowia lipolytica against UC induced by acetic acid (AA) in rats. METHODS The produced SLs were identified by FTIR, 1H NMR and LC-MS/MS spectra, and administered orally for 7 days (200 mg/kg/day) before AA (2 ml, 4% v/v) to induce UC intrarectally on day eight. Biochemically, the levels of TLR-4, c-Jun N-terminal kinase (JNK), nuclear factor kappa B-p65 (NFκB-p65), interleukin-1beta (IL-1β), malondialdehyd, glutathione, Bax/Bcl2 ratio and the immunohistochemical evaluation of inducible nitric oxide synthase and caspase-3 were assayed. KEY FINDINGS SLs significantly reduced OS, inflammatory and apoptotic markers in AA-treated rats, almost like the reference sulfasalazine. CONCLUSIONS This study provided a novel impact for SLs produced by microbial conversion of M. oleifera oil cake against AA-induced UC in rats through hampering the TLR-4/p-JNK/NFκB-p65 signalling pathway.
Collapse
Affiliation(s)
- Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Mona M Rashad
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Abd El-Nasser A Khattab
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
6
|
Phulpoto IA, Yu Z, Qazi MA, Ndayisenga F, Yang J. A comprehensive study on microbial-surfactants from bioproduction scale-up toward electrokinetics remediation of environmental pollutants: Challenges and perspectives. CHEMOSPHERE 2023; 311:136979. [PMID: 36309062 DOI: 10.1016/j.chemosphere.2022.136979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Currently, researchers have focused on electrokinetic (EK) bioremediation due to its potential to remove a wide-range of pollutants. Further, to improve their performance, synthetic surfactants are employed as effective additives because of their excellent solubility and mobility. Synthetic surfactants have an excessive position in industries since they are well-established, cheap, and easily available. Nevertheless, these surfactants have adverse environmental effects and could be detrimental to aquatic and terrestrial life. Owing to social and environmental awareness, there is a rising demand for bio-based surfactants in the global market, from environmental sustainability to public health, because of their excellent surface and interfacial activity, higher and stable emulsifying property, biodegradability, non- or low toxicity, better selectivity and specificity at extreme environmental conditions. Unfortunately, challenges to biosurfactants, like expensive raw materials, low yields, and purification processes, hinder their applicability to large-scale. To date, extensive research has already been conducted for production scale-up using multidisciplinary approaches. However, it is still essential to research and develop high-yielding bacteria for bioproduction through traditional and biotechnological advances to reduce production costs. Herein, this review evaluates the recent progress made on microbial-surfactants for bioproduction scale-up and provides detailed information on traditional and advanced genetic engineering approaches for cost-effective bioproduction. Furthermore, this study emphasized the role of electrokinetic (EK) bioremediation and discussed the application of BioS-mediated EK for various pollutants remediation.
Collapse
Affiliation(s)
- Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's, 66020, Sindh, Pakistan
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, 100085, China.
| | - Muneer Ahmed Qazi
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's, 66020, Sindh, Pakistan
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jie Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
7
|
Shen D, He X, Weng P, Liu Y, Wu Z. A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation. FEMS Yeast Res 2022; 22:6775076. [PMID: 36288242 DOI: 10.1093/femsyr/foac050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 10/22/2022] [Indexed: 01/07/2023] Open
Abstract
Yeast is widely used in the fermentation industry, and the major challenges in fermentation production system are high capital cost and low reaction rate. High cell-density culture is an effective method to increase the volumetric productivity of the fermentation process, thus making the fermentation process faster and more robust. During fermentation, yeast is subjected to various environmental stresses, including osmotic, ethanol, oxidation, and heat stress. To cope with these stresses, yeast cells need appropriate adaptive responses to acquire stress tolerances to prevent stress-induced cell damage. Since a single stressor can trigger multiple effects, both specific and nonspecific effects, general and specific stress responses are required to achieve comprehensive protection of cells. Since all these stresses disrupt protein structure, the upregulation of heat shock proteins and trehalose genes is induced when yeast cells are exposed to stress. A better understanding of the research status of yeast HCDC and its underlying response mechanism to various stresses during fermentation is essential for designing effective culture control strategies and improving the fermentation efficiency and stress resistance of yeast.
Collapse
Affiliation(s)
- Dongxu Shen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Xiaoli He
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
8
|
Liu J, Zhang X, Liu G, Zhao G, Fang X, Song X. A Cumulative Effect by Multiple-Gene Knockout Strategy Leads to a Significant Increase in the Production of Sophorolipids in Starmerella Bombicola CGMCC 1576. Front Bioeng Biotechnol 2022; 10:818445. [PMID: 35356780 PMCID: PMC8959766 DOI: 10.3389/fbioe.2022.818445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sophorolipids (SLs), an important biosurfactant produced by S. bombicola, were one of the most potential substitutes for chemical surfactants. Few reports on the transcriptional regulation of SLs synthesis and the engineered strains with high-yield SLs were available. In this study, a Rim9-like protein (Rlp) and three transcription factors (ztf1, leu3, gcl) were mined and analyzed, and a progressive enhancement of SLs production was achieved through cumulative knockouts of three genes. The sophorolipid production of ΔrlpΔleu3Δztf1 reached 97.44 g/L, increased by 50.51% than that of the wild-type strain. Compared with the wild-type strain, the flow of glucose to SLs synthesis pathways was increased, and the synthesis of branched-chain amino acids was reduced in ΔrlpΔleu3Δztf1. The amount of UDP-glucose, the substrate for two glycosyltransferases, also increased, and the expression level of the key genes sble and UGPase for SLs synthesis increased by 2.2 times, respectively. The multiple-gene knockout strategy was proved to be highly effective to construct the engineered strain with high-yield SLs production, and this strain was a superior strain for industrial fermentation of SLs and reduced SLs production costs.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guoqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoran Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- *Correspondence: Xin Song,
| |
Collapse
|
9
|
Qazi MA, Wang Q, Dai Z. Sophorolipids bioproduction in the yeast Starmerella bombicola: Current trends and perspectives. BIORESOURCE TECHNOLOGY 2022; 346:126593. [PMID: 34942344 DOI: 10.1016/j.biortech.2021.126593] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Sophorolipids are highly active green surfactants (glycolipid biosurfactants) getting tremendous appreciation worldwide due to their low toxicity, biodegradability, broad spectrum of applications, and significant biotechnological potential. Sophorolipids are mainly produced by an oleaginous budding yeast Starmerella bombicola using low-cost substrates. Therefore, the recent state-of-art literature information about S. bombicola yeast is hereby provided, especially the underlying production pathways, biosynthetic gene cluster, and regulatory enzymes. Moreover, the S. bombicola offers flexibility for regulating the structural diversity of sophorolipids, either genetically or by varying fermentative conditions. The emergence of advanced technologies like 'Omics and CRISPR/Cas have certainly boosted rational engineering research for designing high-performing platform strains. Therefore, currently available genetic engineering tools in S. bombicola were reviewed, thereby opening up exciting new possibilities for improving the overall bioproduction titers, structural variability, and stability of sophorolipids. Finally, some technical perspectives to address the current challenges were discussed.
Collapse
Affiliation(s)
- Muneer Ahmed Qazi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, 66020 Sindh, Pakistan
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China.
| |
Collapse
|
10
|
Liu J, Zhao G, Zhang X, Song X. Identification of Four Secreted Aspartic Protease-Like Proteins Associated With Sophorolipids Synthesis in Starmerella bombicola CGMCC 1576. Front Microbiol 2021; 12:737244. [PMID: 34594319 PMCID: PMC8476993 DOI: 10.3389/fmicb.2021.737244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
The non-pathogenic yeast Starmerella bombicola CGMCC 1576 is an efficient producer of sophorolipids (SLs). The lactonic SLs are mainly produced with yeast extract, and the acidic SLs are mainly produced with ammonium sulfate. Naturally produced SLs are a mixture of various lactonic and acidic SLs. Usually, the SL mixture is not well separated technically, and the separation cost is relatively high. In order to reduce the cost of separation, four secreted aspartic protease-like proteins were identified through proteomic analysis of fermentation broth of S. bombicola under different nitrogen source conditions. The coding genes of the four proteins, namely, sapl1, sapl2, sapl3, and sapl4, are of high sequence similarity (above 55%) and included in a gene cluster. The expression of the four genes was significantly upregulated on (NH4)2SO4 compared with that on yeast extract. The four genes were deleted together to generate a strain Δsapl. The titer of SLs in Δsapl reached 60.71 g/L after 5 days of fermentation using (NH4)2SO4 as the nitrogen source and increased by 90% compared with the wild-type strain. The concentration of acidic SLs was 55.84 g/L, accounting for 92% of the total SLs. The yield of SLs from glucose (g/g) by Δsapl was 0.78, much higher than that by wild-type strain (0.47). However, no increase of SLs production was observed in Δsapl under yeast extract condition. Compared with that of the wild-type strain, the expression levels of the key genes for SLs synthesis were all upregulated to varying degrees in Δsapl under (NH4)2SO4 conditions, and particularly, the expression level of ugta1 encoding UDP glucosyltransferase was upregulated by 14.3-fold. The results suggest that the sapl gene cluster is negatively involved in the production of SLs in the case of (NH4)2SO4 by restraining the expression of the key genes involved in SLs synthesis. The Δsapl strain is an excellent producer of high-titer and high-yield acidic SLs.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guoqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|