1
|
Zheng Y, Ngo HH, Luo H, Wang R, Li C, Zhang C, Wang X. Production of cost-competitive bioethanol and value-added co-products from distillers' grains: Techno-economic evaluation and environmental impact analysis. BIORESOURCE TECHNOLOGY 2024; 397:130470. [PMID: 38395236 DOI: 10.1016/j.biortech.2024.130470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Here, Baijiu distillers' grains (BDGs) were employed in biorefinery development to generate value-added co-products and bioethanol. Through ethyl acetate extraction at a 1:6 solid-liquid ratio for 10 h, significant results were achieved, including 100 % lactic acid and 92 % phenolics recovery. The remaining BDGs also achieved 99 % glucan recovery and 81 % glucan-to-glucose conversion. Simultaneous saccharification and fermentation of remaining BDGs at 30 % loading resulted in 78.5 g bioethanol/L with a yield of 94 %. The minimum selling price of bioethanol varies from $0.149-$0.836/kg, contingent on the co-product market prices. The biorefinery processing of one ton of BDGs caused a 60 % reduction in greenhouse gas emissions compared to that of the traditional production of 88 kg corn-lactic acid, 70 kg antioxidant phenolics, 234 kg soybean protein, and 225 kg corn-bioethanol, along with emissions from BDG landfilling. The biorefinery demonstrated a synergistic model of cost-effective bioethanol production and low-carbon emission BDGs treatment.
Collapse
Affiliation(s)
- Yuxi Zheng
- Department of Resources and Environmental Science, Moutai Institute, Renhuai 564500, Guizhou Province, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, FEIT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Han Luo
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruxue Wang
- Department of Resources and Environmental Science, Moutai Institute, Renhuai 564500, Guizhou Province, China
| | - Chun Li
- Baolu Green Technology (Chengdu) Co., Ltd., Chengdu 610000, China
| | - Chaolong Zhang
- Baolu Green Technology (Chengdu) Co., Ltd., Chengdu 610000, China
| | - Xuliang Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China; China Alcoholic Drinks Association, Beijing 100037, China.
| |
Collapse
|
2
|
Wayllace NM, Martín M, Busi MV, Gomez-Casati DF. Microbial glucoamylases: structural and functional properties and biotechnological uses. World J Microbiol Biotechnol 2023; 39:293. [PMID: 37653355 DOI: 10.1007/s11274-023-03731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Glucoamylases (GAs) are one of the principal groups of enzymes involved in starch hydrolysis and belong to the glycosylhydrolase family. They are classified as exo-amylases due to their ability to hydrolyze α-1,4 glycosidic bonds from the non-reducing end of starch, maltooligosaccharides, and related substrates, releasing β-D-glucose. Structurally, GAs possess a characteristic catalytic domain (CD) with an (α/α)6 fold and exhibit five conserved regions within this domain. The CD may or may not be linked to a non-catalytic domain with variable functions depending on its origin. GAs are versatile enzymes with diverse applications in food, biofuel, bioplastic and other chemical industries. Although fungal GAs are commonly employed for these purposes, they have limitations such as their low thermostability and an acidic pH requirement. Alternatively, GAs derived from prokaryotic organisms are a good option to save costs as they exhibit greater thermostability compared to fungal GAs. Moreover, a group of cold-adapted GAs from psychrophilic organisms demonstrates intriguing properties that make them suitable for application in various industries. This review provides a comprehensive overview of the structural and sequential properties as well as biotechnological applications of GAs in different industrial processes.
Collapse
Affiliation(s)
- Natael M Wayllace
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Mariana Martín
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - María V Busi
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| | - Diego F Gomez-Casati
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| |
Collapse
|
3
|
Wang C, Liu Y, Xu L, Xin C, Tan Z, Zhang X, Ma C, Chen S, Li H. Changes of the main components, physicochemical properties of distiller's grains after extrusion processing with focus on modification mechanism. Food Chem 2022; 390:133187. [PMID: 35569400 DOI: 10.1016/j.foodchem.2022.133187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Distiller's grains (DGs) possessed great potential utilization value due to their rich active ingredients. However, its utilization efficiency was limited by the large amount of lignocellulose components and water-insoluble proteins. In this work, single screw extrusion was applied to modify physicochemical properties of DGs. Results indicated that extruded distiller's grains (EDGs) exhibited the lower crude fiber content (26.01%), the higher soluble fiber (9.07%) and the smaller particle size when compared with those of Control, and subsequently achieving the increased bulk density, swelling capacity and water/oil holding capacity. The crude protein in EDGs decreased slightly, while the total amount of acid hydrolyzed amino acids showed a significant increase. Additionally, the looser, coarser and fragmentary microstructure of EDGs were observed. The main macromolecules in EDGs had been modified distinctly based on thermal analysis, crystallinity and functional groups analyses, while the possible schematic diagram was conducted to better understand the modification mechanism.
Collapse
Affiliation(s)
- Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China; Shandong Bandaojing Co, Ltd, Zibo 256300, Shandong, China
| | - Yao Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Ling Xu
- Shandong Bandaojing Co, Ltd, Zibo 256300, Shandong, China
| | - Chunhui Xin
- Shandong Bandaojing Co, Ltd, Zibo 256300, Shandong, China
| | - Zhen Tan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xin Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| |
Collapse
|
4
|
A new method for screening and culture of Clostridium from pit mud under non-anaerobic conditions. J Microbiol Methods 2022; 200:106559. [PMID: 36007702 DOI: 10.1016/j.mimet.2022.106559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022]
Abstract
Strong-flavor Baijiu (SFB) is produced in complex fermentation in pits under ground. Clostridium producing hexanoic acid plays a key role in the flavor formation of SFB. The screening and culture for Clostridium are very difficult because of its strict anaerobic characteristics. In this study, electric field assisted screening (EFAS) was used to screen Clostridium from pit mud, and electric culture (EC) was used to cultivate Clostridium under non-anaerobic conditions. A strain with a high yield of hexanoic acid was screened and named as Clostridium sp. EFAS6. Under non-anaerobic conditions, it grew rapidly only near the cathode end in the EFAS device because of the low oxidation-reduction potential of that electrode. In the experiment of high-density culture in the EC device, the cell concentration reached 106-107. After energy consumption was calculated, the optimal loading voltage was found to be 10 V. In the application, the broth of Clostridium sp. EFAS6 increased the content of ethyl hexanoic in SFB. Under non-anaerobic conditions, the anaerobe was screened by EFAS and cultivated in high density by EC. The EFAS and EC could also be used for the screening and culture of other anaerobes under non-anaerobic conditions.
Collapse
|
5
|
Liu D, Ma X, Huang J, Shu Z, Chu X, Li Y, Jin Y. Study on personalized microbial formulation during high-temperature aerobic fermentation of different types of food wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152561. [PMID: 34973323 DOI: 10.1016/j.scitotenv.2021.152561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The rapidly growing generation of food wastes has attracted extensive attention. In this context, biochemical processors, using high-temperature aerobic fermentation, has become a beneficial method to treat food waste in situ. However, existing microbial agents do not vary the proportion of strains according to the different food wastes, with this approach affecting the degradation efficiency. In this study, high-temperature resistant strains, with high degradation efficiency, were isolated and screened, before establishing a novel method for preparing personalized microbial formulations. Using the degradation efficiency of wastes after three days as the evaluation standard, 12 groups of Plackett-Burman experiments were used to determine the main effect strains for different types of food waste. Fifteen groups of Box-Behnken experiments were then used to determine their best proportions at which the maximum degradation efficiency occurred. Finally, simulated fermentation experiments were used to check for improvement of the fermentation process by mixing strains according to the personalized proportions. Results of molecular identification and physiological assessments indicated that all the seven strains were Bacillus spp., with no antagonistic effects between them. Based on the Plackett-Burman and Box-Behnken tests, three personalized bacterial agents were obtained for different types of food waste. The fermentation results further showed that, compared with the use of equal proportions of strains, a maximum increase of 15.43% in organic matter degradation was achieved after adding personalized proportions. This study provides both theoretical and practical references for the use of personalized microbial agent formulations for high-temperature aerobic fermentation of food wastes, thus providing these microbial agents with good prospects and economic value.
Collapse
Affiliation(s)
- Dandan Liu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xinxin Ma
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jianli Huang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhifei Shu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xu Chu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yangyang Li
- Zhejiang Jiaxing Green Energy Environmental Protection Technology Co. LTD, Jiaxing 314000, PR China
| | - Yiying Jin
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
6
|
Wang J, Kong B, Feng J, Wang H, Zhang R, Cai F, Yu Q, Zhu Z, Cao J, Xu J. A novel strategy for comprehensive utilization of distillers’ grain waste towards energy and resource recovery. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Wang SP, Wang L, Sun ZY, Wang ST, Yuan HW, An MZ, Tang YQ, Shen CH, Kida K. Effect of distillery sewage sludge addition on performance and bacterial community dynamics during distilled grain waste composting. BIORESOURCE TECHNOLOGY 2022; 345:126486. [PMID: 34871724 DOI: 10.1016/j.biortech.2021.126486] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the dynamics of physicochemical characteristics and bacterial communities during the co-composting of distilled grain waste (DGW) and distillery sewage sludge (SS), with DGW mono-composting as a control. Results showed that co-composting with SS significantly improved DGW degradation efficiency (61.38% vs. 54.13%) and end-product quality (seed germination index: 129.82% vs. 113.61%; N + P2O5 + K2O: 9.08% vs. 5.28%), compared to DGW mono-composting. Microbial community analysis revealed that co-composting accelerated the bacterial community succession rate and enhanced the abundance of the phyla Proteobacteria, Firmicutes, Chloroflexi, and Deinococcota by 45.86%, 4.38%, 37.49%, and 15.29%, respectively. Network analysis showed that DGW-SS co-composting altered the interactions among the bacterial genera and improved bacterial community stability. Spearman correlation analysis indicated that the correlation between bacterial genera and environmental factors was more significant in DGW-SS co-composting. Therefore, co-composting of DGW and SS is a suitable strategy for the treatment of solid byproducts from spirit distilleries.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | | | - Hua-Wei Yuan
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Ming-Zhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644007, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | | | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|