1
|
Zhang W, Shao ZQ, Wang ZX, Ye YF, Li SF, Wang YJ. Advances in aldo-keto reductases immobilization for biocatalytic synthesis of chiral alcohols. Int J Biol Macromol 2024; 274:133264. [PMID: 38901517 DOI: 10.1016/j.ijbiomac.2024.133264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Chiral alcohols are essential building blocks of numerous pharmaceuticals and fine chemicals. Aldo-keto reductases (AKRs) constitute a superfamily of oxidoreductases that catalyze the reduction of aldehydes and ketones to their corresponding alcohols using NAD(P)H as a coenzyme. Knowledge about the crucial roles of AKRs immobilization in the biocatalytic synthesis of chiral alcohols is expanding. Herein, we reviewed the characteristics of various AKRs immobilization approaches, the applications of different immobilization materials, and the prospects of continuous flow bioreactor construction by employing these immobilized biocatalysts for synthesizing chiral alcohols. Finally, the opportunities and ongoing challenges for AKR immobilization are discussed and the outlook for this emerging area is analyzed.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zi-Qing Shao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Xiu Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Fan Ye
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Li X, Yu H, Liu S, Ma B, Wu X, Zheng X, Xu Y. Discovery, characterization and mechanism of a Microbacterium esterase for key d-biotin chiral intermediate synthesis. BIORESOUR BIOPROCESS 2024; 11:59. [PMID: 38879848 PMCID: PMC11180644 DOI: 10.1186/s40643-024-00776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Esterases are crucial biocatalysts in chiral compound synthesis. Herein, a novel esterase EstSIT01 belonging to family V was identified from Microbacterium chocolatum SIT101 through genome mining and phylogenetic analysis. EstSIT01 demonstrated remarkable efficiency in asymmetrically hydrolyzing meso-dimethyl ester [Dimethyl cis-1,3-Dibenzyl-2-imidazolidine-4,5-dicarboxyate], producing over 99% yield and 99% enantiomeric excess (e.e.) for (4S, 5R)-monomethyl ester, a crucial chiral intermediate during the synthesis of d-biotin. Notably, the recombinant E. coli expressing EstSIT01 exhibited over 40-fold higher activity than that of the wild strain. EstSIT01 displays a preference for short-chain p-NP esters. The optimal temperature and pH were 45 °C and 10.0, with Km and kcat values of 0.147 mmol/L and 5.808 s- 1, respectively. Molecular docking and MD simulations suggest that the high stereoselectivity for meso-diester may attribute to the narrow entrance tunnel and unique binding pocket structure. Collectively, EstSIT01 holds great potential for preparing chiral carboxylic acids and esters.
Collapse
Affiliation(s)
- Xinjia Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd, Linyi, 276400, China
| | - Baodi Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiaomei Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xuesong Zheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Yi Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
3
|
Bai Y, Jing Z, Ma R, Wan X, Liu J, Huang W. A critical review of enzymes immobilized on chitosan composites: characterization and applications. Bioprocess Biosyst Eng 2023; 46:1539-1567. [PMID: 37540309 DOI: 10.1007/s00449-023-02914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Enzymes with industrial significance are typically used in biological processes. However, instability, high sensitivity, and impractical recovery are the major drawbacks of enzymes in practical applications. In recent years, the immobilization technology has attracted wide attention to overcoming these restrictions and improving the efficiency of enzyme applications. Chitosan (CS) is a unique functional substance with biocompatibility, biodegradability, non-toxicity, and antibacterial properties. Chitosan composites are anticipated to be widely used in the near future for a variety of purposes, including as supports for enzyme immobilization, because of their advantages. Therefor this review explores the effects of the chitosan's structure, molecular weight, degree of deacetylation on the enzyme immobilized, effect of key factors, and the enzymes immobilized on chitosan based composites for numerous applications, including the fields of biosensor, biomedical science, food industry, environmental protection, and industrial production. Moreover, this study carefully investigates the advantages and disadvantages of using these composites as well as their potential in the future.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Zongxian Jing
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Rui Ma
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Xinwen Wan
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Jie Liu
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Weiting Huang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
4
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. Immobilization of Hyperthermostable Carboxylesterase EstD9 from Anoxybacillus geothermalis D9 onto Polymer Material and Its Physicochemical Properties. Polymers (Basel) 2023; 15:polym15061361. [PMID: 36987142 PMCID: PMC10056866 DOI: 10.3390/polym15061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Carboxylesterase has much to offer in the context of environmentally friendly and sustainable alternatives. However, due to the unstable properties of the enzyme in its free state, its application is severely limited. The present study aimed to immobilize hyperthermostable carboxylesterase from Anoxybacillus geothermalis D9 with improved stability and reusability. In this study, Seplite LX120 was chosen as the matrix for immobilizing EstD9 by adsorption. Fourier-transform infrared (FT-IR) spectroscopy verified the binding of EstD9 to the support. According to SEM imaging, the support surface was densely covered with the enzyme, indicating successful enzyme immobilization. BET analysis of the adsorption isotherm revealed reduction of the total surface area and pore volume of the Seplite LX120 after immobilization. The immobilized EstD9 showed broad thermal stability (10-100 °C) and pH tolerance (pH 6-9), with optimal temperature and pH of 80 °C and pH 7, respectively. Additionally, the immobilized EstD9 demonstrated improved stability towards a variety of 25% (v/v) organic solvents, with acetonitrile exhibiting the highest relative activity (281.04%). The bound enzyme exhibited better storage stability than the free enzyme, with more than 70% of residual activity being maintained over 11 weeks. Through immobilization, EstD9 can be reused for up to seven cycles. This study demonstrates the improvement of the operational stability and properties of the immobilized enzyme for better practical applications.
Collapse
Affiliation(s)
- Ummie Umaiera Mohd Johan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Wu Y, Ye Q, Zhang L, Cheng Z, Xiao K, Zhu L, Yin Y, Dong H. Evaluation on antiosteoporosis of collagen peptides prepared by immobilized protease with eggshell membrane. J Food Sci 2022; 87:2391-2404. [PMID: 35584966 DOI: 10.1111/1750-3841.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Collagen peptides are a potential treatment for osteoporosis due to their antiosteoporosis activity. In this study, we prepared immobilized protease with eggshell membrane as carrier, and then hydrolyzed collagen to obtain collagen peptide. The antiosteoporosis of collagen peptides was confirmed by hBMSC osteogenic differentiation and bone mineralization improvement results. Surprisingly, antiosteoporosis of collagen peptides was related to the molecular weight of collagen peptides. This was derived from the osteoblast marker gene expressions, and mineral elements in P1 treatment were higher than those in P3 treatment. Consequently, these results confirmed that antiosteoporosis of low molecular weight collagen peptides is higher than that of higher molecular weight collagen peptides. Furthermore, the antiosteoporosis activity of P1 was due to its peptide sequences with known antiosteoporosis activity in P1. PRACTICAL APPLICATION: Using eggshell membrane as carrier to prepare immobilized protease was meaningful for solving the problem of resource waste. In addition, the results showed that collagen peptides possessed antiosteoporosis, and the effect of low molecular weight collagen peptides was better. This study provides a theoretical basis for developing high antiosteoporosis collagen peptides able to treat osteoporosis.
Collapse
Affiliation(s)
- Yuanyue Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qianqian Ye
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Zhang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Zuxin Cheng
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Kaijun Xiao
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Liang Zhu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yurong Yin
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
6
|
Wei K, Wu X, Ma B, Li Z, Xu Y. Facile immobilization of his-tagged Microbacterial esterase on Ni-SBA-15 with enhanced stability for efficient synthesis of key chiral intermediate of d-biotin. Bioprocess Biosyst Eng 2022; 45:1075-1088. [PMID: 35532819 DOI: 10.1007/s00449-022-02729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
A series of nickel-incorporated SBA-15 mesoporous molecular sieves (Ni-SBA-15) were prepared as support for the immobilization of his-tagged recombinant Microbacterium esterase. The Ni-SBA-15 could strongly and specific absorb the his-tagged esterase from cell disrupted supernatant. It was found that the nickel amount in Ni-SBA-15 has dramatic influence on the activity and thermo-stability of immobilized enzyme, while the kinds of nickel precursor had little effect on enzyme stability. The morphology, chemical composition and structure of the best support NiCl2-SBA-15 (Ni-SBA-15 prepared from NiCl2 precursor) were characterized by various spectroscopy techniques. The immobilized esterase retained full activity of free esterase and showed high immobilized yield (> 90%) with higher thermo-stability, pH stability and organic solvent resistance compared with free enzyme. The optimum reaction temperature increased from 35 to 40 °C and the optimal reaction pH moved from 10.0 to 8.0 after enzyme immobilization. The immobilized esterase exhibited excellent storage stability and keeping 92% of the initial activity after 30 days' storage at 25 °C. In addition, the immobilized esterase had excellent reusability for the synthesis of key chiral intermediate of d-biotin and the substrate conversion could still keep 100% after 13 cycles continuously. Finally, optical pure (4S, 5R)-hemiester was obtained in 80.8% isolated yield and 99% purity in the gram preparative scale.
Collapse
Affiliation(s)
- Kaixin Wei
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiaomei Wu
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Baodi Ma
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Xu
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
7
|
Nickel-Functionalized Chitosan for the Oriented Immobilization of Histidine-Tagged Enzymes: A Promising Support for Food Bioprocess Applications. Catal Letters 2022. [DOI: 10.1007/s10562-021-03912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|