1
|
Hossain MZ, Ando H, Roy RR, Kitagawa J. Topical ATP Application in the Peripheral Swallowing-Related Regions Facilitates Triggering of the Swallowing Reflex Involving P2X3 Receptors. FUNCTION 2025; 6:zqaf010. [PMID: 40042973 PMCID: PMC11931623 DOI: 10.1093/function/zqaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
The swallowing reflex is a critical component of the digestive process, triggered when food or liquids pass from the oral cavity to the oesophagus. Although adenosine triphosphate (ATP) is involved in various physiological processes, its potential to trigger the swallowing reflex has not been fully explored. This study investigated the ability of ATP to induce the swallowing reflex and examined the involvement of the purinoreceptor P2X3 in this process. We observed that the topical application of exogenous ATP to the superior laryngeal nerve (SLN)-innervated swallowing-related regions dose-dependently facilitated the triggering of the swallowing reflex. P2X3 receptors were predominantly localized on nerve fibres within these regions, including intraepithelial and subepithelial nerves and those associated with taste-bud-like structures. In the nodose-petrosal-jugular ganglionic complex, approximately 40% of retrogradely traced SLN-afferent neurons expressed P2X3, with 59% being medium-sized, 30% small, and 11% large. Prior topical application of a P2X3 antagonist in SLN-innervated, swallowing-related regions significantly reduced the number of ATP-induced swallowing reflexes. Furthermore, topical application of a P2X3 receptor agonist more selective than ATP facilitated reflex triggering in a dose-dependent manner. These findings suggest that exogenous ATP facilitates the triggering of the swallowing reflex through the activation of P2X3 receptors. This activation excites afferent neurons that supply peripheral swallowing-related regions, stimulating the swallowing central pattern generator to facilitate the reflex. The current findings suggest the therapeutic potential of ATP or P2X3 agonists for dysphagia treatment and provide valuable physiological insights into the involvement of purinergic signaling in triggering the swallowing reflex.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Rita Rani Roy
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
2
|
Sasegbon A, Cheng I, Labeit B, Lapa S, Rommel N, Hamdy S. New and Evolving Treatments for Neurologic Dysphagia. Drugs 2024; 84:909-932. [PMID: 38954267 DOI: 10.1007/s40265-024-02064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Despite swallowing being a frequently performed daily function, it is highly complex. For a safe swallow to occur, muscles within the head, neck, and thorax need to contract in a concerted pattern, controlled by several swallowing centers at multiple levels of the central nervous system, including the midbrain, cerebral cortex, and cerebellum in addition to five cranial nerves. Dysphagia, or difficulty swallowing, is caused by a long list of pathologic processes and diseases, which can interfere with various stages along the swallowing sensorimotor pathway. When present, dysphagia leads to increased mortality, morbidity, hospital length of stay, and reduced quality of life. Current dysphagia management approaches, such as altering the texture and consistency of foods and fluids and teaching patients rehabilitative exercises, have been broadly unchanged for many years and, in the case of texture modification, are of uncertain effectiveness. However, evidence is emerging in support of new medication-based and neuromodulatory treatment approaches. Regarding medication-based therapies, most research has focused on capsaicinoids, which studies have shown are able to improve swallowing in patients with post-stroke dysphagia. Separately, albeit convergently, in the field of neuromodulation, there is a growing and positive evidential base behind three non-invasive brain stimulation techniques: repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (TDCS), and pharyngeal electrical stimulation (PES). Should some or all of these emerging therapies fulfill their promise, dysphagia-related patient outcomes may be improved. This paper describes the current state of our understanding regarding new medication and neuromodulation-based neurogenic oropharyngeal dysphagia treatments.
Collapse
Affiliation(s)
- Ayodele Sasegbon
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, School of Medical Sciences, Centre for Gastrointestinal Sciences, University of Manchester, Manchester, UK
| | - Ivy Cheng
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, School of Medical Sciences, Centre for Gastrointestinal Sciences, University of Manchester, Manchester, UK
- Academic Unit of Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Hong Kong, China
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Universitätsklinikum Münster, Münster, Germany
| | - Bendix Labeit
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sriramya Lapa
- Department of Neurology, Goethe University and University Hospital, Frankfurt, Germany
| | - Nathalie Rommel
- Deglutology, Experimental Otorhinolaryngology, Department of Neurosciences, University of Leuven, Leuven, Belgium
- Department of Gastroenterology, Neurogastroenterology and Motility, University Hospitals Leuven, Leuven, Belgium
| | - Shaheen Hamdy
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, School of Medical Sciences, Centre for Gastrointestinal Sciences, University of Manchester, Manchester, UK.
- Centre for Gastrointestinal Sciences, Salford Royal Foundation Trust, University of Manchester, Clinical Sciences Building, Manchester, Eccles Old Road, Salford, M6 8HD, UK.
| |
Collapse
|
3
|
Rastmanesh R, Bowirrat A, Gupta A, Gilley E, Blum K. Anti(angiogenic) food components: can be a major source of bias in the investigation of angiogenesis inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:419. [PMID: 38213800 PMCID: PMC10777223 DOI: 10.21037/atm-23-1517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/24/2023] [Indexed: 01/13/2024]
Abstract
Background Natural and diet-derived angiogenesis inhibitors/promotors are widely found in diets. These compounds can in several ways impact the results of oncological research of angiogenesis inhibitors. Methods We very briefly overview some of the most important examples to show how these compounds can create a bias in current research of cancer. Implications of this expert opinion cover similar angiogenesis-related diseases. Results Significant intra-individual differences in terms of dietary intake and differential effect of food processing techniques result in differential bioactivity and bioavailability of these compounds. There are only a handful of validated dietary questionnaire to quantify natural angiogenesis inhibitors/promotors. A corollary consequence is that participants in non-randomized clinical trials will have different baseline levels of serum/plasma/tissue/organ diet-derived angiogenesis inhibitors/promotors. This will lead to creation of clinical uncertainty and a hidden bias and consequently creation of translational efficiency bias, sampling efficiency, and waste of resources. We call for developing and validating a semi-quantitative food frequency questionnaire (FFQ) to gather data on these agents, specifically designed for oncological research because there is a clear gap in the literature of oncology. Conclusions This might facilitate the discovery of better prognostic, diagnostic, preventive measures, and therapeutic agents for the management of different cancers. Implications of this paper cover similar settings like ophthalmologic research.
Collapse
Affiliation(s)
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Elizabeth Gilley
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Hossain MZ, Kitagawa J. Transient receptor potential channels as an emerging therapeutic target for oropharyngeal dysphagia. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:421-430. [PMID: 38022386 PMCID: PMC10665593 DOI: 10.1016/j.jdsr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Oropharyngeal dysphagia is a serious health concern in older adults and patients with neurological disorders. Current oropharyngeal dysphagia management largely relies on compensatory strategies with limited efficacy. A long-term goal in swallowing/dysphagia-related research is the identification of pharmacological treatment strategies for oropharyngeal dysphagia. In recent decades, several pre-clinical and clinical studies have investigated the use of transient receptor potential (TRP) channels as a therapeutic target to facilitate swallowing. Various TRP channels are present in regions involved in the swallowing process. Animal studies have shown that local activation of these channels by their pharmacological agonists initiates swallowing reflexes; the number of reflexes increases when the dose of the agonist reaches a particular level. Clinical studies, including randomized clinical trials involving patients with oropharyngeal dysphagia, have demonstrated improved swallowing efficacy, safety, and physiology when TRP agonists are mixed with the food bolus. Additionally, there is evidence of plasticity development in swallowing-related neuronal networks in the brain upon TRP channel activation in peripheral swallowing-related regions. Thus, TRP channels have emerged as a promising target for the development of pharmacological treatments for oropharyngeal dysphagia.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
5
|
Hossain MZ, Ando H, Unno S, Roy RR, Kitagawa J. Pharmacological activation of transient receptor potential vanilloid 4 promotes triggering of the swallowing reflex in rats. Front Cell Neurosci 2023; 17:1149793. [PMID: 36909278 PMCID: PMC9992545 DOI: 10.3389/fncel.2023.1149793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
The swallowing reflex is an essential physiological reflex that allows food or liquid to pass into the esophagus from the oral cavity. Delayed triggering of this reflex is a significant health problem in patients with oropharyngeal dysphagia for which no pharmacological treatments exist. Transient receptor potential channels have recently been discovered as potential targets to facilitate triggering of the swallowing reflex. However, the ability of transient receptor potential vanilloid 4 (TRPV4) to trigger the swallowing reflex has not been studied. Here, we demonstrate the involvement of TRPV4 in triggering the swallowing reflex in rats. TRPV4 immunoreactive nerve fibers were observed in the superior laryngeal nerve (SLN)-innervated swallowing-related regions. Retrograde tracing with fluorogold revealed localization of TRPV4 on approximately 25% of SLN-afferent neurons in the nodose-petrosal-jugular ganglionic complex. Among them, approximately 49% were large, 35% medium, and 15% small-sized SLN-afferent neurons. Topical application of a TRPV4 agonist (GSK1016790A) to the SLN-innervated regions dose-dependently facilitated triggering of the swallowing reflex, with the highest number of reflexes triggered at a concentration of 250 μM. The number of agonist-induced swallowing reflexes was significantly reduced by prior topical application of a TRPV4 antagonist. These findings indicate that TRPV4 is expressed on sensory nerves innervating the swallowing-related regions, and that its activation by an agonist can facilitate swallowing. TRPV4 is a potential pharmacological target for the management of oropharyngeal dysphagia.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Rita Rani Roy
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
6
|
Edmonds CE, German RZ, Bond LE, Mayerl CJ. Oropharyngeal Capsaicin Exposure Improves Infant Feeding Performance in an Animal Model of Superior Laryngeal Nerve Damage. J Neurophysiol 2022; 128:339-349. [PMID: 35822726 PMCID: PMC9359634 DOI: 10.1152/jn.00063.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor feedback is critical to safe and effective swallowing. Because of this, sensory interventions have the potential to treat dysphagia. One such treatment may be found in capsaicin, which activates the internal branch of the superior laryngeal nerve (iSLN). The iSLN initiates the pharyngeal swallow, and a more sensitive iSLN should more readily elicit swallowing and improve swallow safety. We explored the neurophysiological mechanism by which capsaicin improves swallow performance using an infant pig model with a unilateral iSLN lesion. Using high-speed videofluoroscopy, we collected oropharyngeal kinematic data while pigs suckled on bottles, before and after applying capsaicin to the posterior tongue and valleculae. We found that capsaicin application decreased maximal bolus sizes, which improved swallow safety. Furthermore, capsaicin improved performance when infant pigs swallowed more moderately sized boluses. However, capsaicin did not change swallow frequency, the number of sucks prior to each swallow, nor total pharyngeal transit time (TPT). Similarly, excursions of the hyoid, thyroid, and posterior tongue were unchanged. TPT and hyoid and thyroid excursions maintained relationships with bolus size post-capsaicin, suggesting that these variables are less sensitive to sensory intervention. The timing and extent of posterior tongue movement were only correlated with bolus size pre-capsaicin, which could imply that capsaicin fundamentally changes in relationships between tongue movements and bolus size. Our results provide insight into the neural control of swallowing and capsaicin's mechanism of action, and suggest that capsaicin may be beneficial in treating acute infant dysphagia.
Collapse
Affiliation(s)
- Chloe E Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, United States
| | - Rebecca Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, United States
| | - Laura E Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, United States
| | - Christopher J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, United States
| |
Collapse
|
7
|
Schindler A, Baijens LWJ, Geneid A, Pizzorni N. Phoniatricians and otorhinolaryngologists approaching oropharyngeal dysphagia: an update on FEES. Eur Arch Otorhinolaryngol 2022; 279:2727-2742. [PMID: 34779927 PMCID: PMC8591442 DOI: 10.1007/s00405-021-07161-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Oropharyngeal dysphagia (OD) is a common phenomenon in otorhinolaryngology and phoniatrics. As both sub-disciplines have a strong tradition and clinical experience in endoscopic assessment of the upper aerodigestive tract, the implementation of fiberoptic endoscopic evaluation of swallowing (FEES) was an almost self-evident evolution. This review aims to provide an update on FEES and the role of phoniatricians and otorhinolaryngologists using FEES in Europe. METHODS A narrative review of the literature was performed by experts in the field of FEES both in the clinical context and in the field of scientific research. RESULTS FEES is the first-choice OD assessment technique for both phoniatricians and otorhinolaryngologists. FEES is becoming increasingly popular because of its usefulness, safety, low costs, wide applicability, and feasibility in different clinical settings. FEES can be performed by health professionals of varying disciplines, once adequate knowledge and skills are acquired. FEES aims to determine OD nature and severity and can provide diagnostic information regarding the underlying etiology. The direct effect of therapeutic interventions can be evaluated using FEES, contributing to design the OD management plan. Standardization of FEES protocols and metrics is still lacking. Technological innovation regarding image resolution, frame rate frequency, endoscopic light source specifications, and endoscopic rotation range has contributed to an increased diagnostic accuracy. CONCLUSION The rising number of phoniatricians and otorhinolaryngologists performing FEES contributes to the early detection and treatment of OD in an aging European population. Nevertheless, a multidisciplinary approach together with other disciplines is crucial for the success of OD management.
Collapse
Affiliation(s)
- Antonio Schindler
- Department of Biomedical and Clinical Sciences "L. Sacco", Milan University, UOS Foniatria, ASST Fatebenefratelli-Sacco, Ospedale Sacco, Via GB Grassi 74, 20154, Milano, Italy.
| | - Laura W J Baijens
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Oncology and Developmental Biology-GROW, Maastricht University, Maastricht, The Netherlands
| | - Ahmed Geneid
- Department of Otorhinolaryngology and Phoniatrics-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nicole Pizzorni
- Department of Biomedical and Clinical Sciences "L. Sacco", Milan University, UOS Foniatria, ASST Fatebenefratelli-Sacco, Ospedale Sacco, Via GB Grassi 74, 20154, Milano, Italy
| |
Collapse
|
8
|
Inamoto Y, Kaneoka A. Swallowing Disorders in the Elderly. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022. [DOI: 10.1007/s40141-021-00339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Prosiegel M. Mit Schluckstörungen assoziierte neurologische Erkrankungen. SCHLUCKSTÖRUNGEN 2022:67-92. [DOI: 10.1016/b978-3-437-44418-0.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Dziewas R, Allescher HD, Aroyo I, Bartolome G, Beilenhoff U, Bohlender J, Breitbach-Snowdon H, Fheodoroff K, Glahn J, Heppner HJ, Hörmann K, Ledl C, Lücking C, Pokieser P, Schefold JC, Schröter-Morasch H, Schweikert K, Sparing R, Trapl-Grundschober M, Wallesch C, Warnecke T, Werner CJ, Weßling J, Wirth R, Pflug C. Diagnosis and treatment of neurogenic dysphagia - S1 guideline of the German Society of Neurology. Neurol Res Pract 2021; 3:23. [PMID: 33941289 PMCID: PMC8094546 DOI: 10.1186/s42466-021-00122-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Neurogenic dysphagia defines swallowing disorders caused by diseases of the central and peripheral nervous system, neuromuscular transmission, or muscles. Neurogenic dysphagia is one of the most common and at the same time most dangerous symptoms of many neurological diseases. Its most important sequelae include aspiration pneumonia, malnutrition and dehydration, and affected patients more often require long-term care and are exposed to an increased mortality. Based on a systematic pubmed research of related original papers, review articles, international guidelines and surveys about the diagnostics and treatment of neurogenic dysphagia, a consensus process was initiated, which included dysphagia experts from 27 medical societies. Recommendations This guideline consists of 53 recommendations covering in its first part the whole diagnostic spectrum from the dysphagia specific medical history, initial dysphagia screening and clinical assessment, to more refined instrumental procedures, such as flexible endoscopic evaluation of swallowing, the videofluoroscopic swallowing study and high-resolution manometry. In addition, specific clinical scenarios are captured, among others the management of patients with nasogastric and tracheotomy tubes. The second part of this guideline is dedicated to the treatment of neurogenic dysphagia. Apart from dietary interventions and behavioral swallowing treatment, interventions to improve oral hygiene, pharmacological treatment options, different modalities of neurostimulation as well as minimally invasive and surgical therapies are dealt with. Conclusions The diagnosis and treatment of neurogenic dysphagia is challenging and requires a joined effort of different medical professions. While the evidence supporting the implementation of dysphagia screening is rather convincing, further trials are needed to improve the quality of evidence for more refined methods of dysphagia diagnostics and, in particular, the different treatment options of neurogenic dysphagia. The present article is an abridged and translated version of the guideline recently published online (https://www.awmf.org/uploads/tx_szleitlinien/030-111l_Neurogene-Dysphagie_2020-05.pdf).
Collapse
Affiliation(s)
- Rainer Dziewas
- Klinik für Neurologie, Universitätsklinik Münster, 48149 Münster, Germany. .,Klinik für Neurologie und Neurologische Frührehabilitation, Klinikum Osnabrück, Am Finkenhügel 1, 49076, Osnabrück, Germany.
| | - Hans-Dieter Allescher
- Zentrum für Innere Medizin, Klinikum Garmisch-Partenkirchen GmbH, Auenstraße 6, 82467, Garmisch-Partenkirchen, Germany
| | - Ilia Aroyo
- Klinik für Neurologie und Neurointensivmedizin, Klinikum Darmstadt, Grafenstr. 9, 64283, Darmstadt, Germany
| | | | | | - Jörg Bohlender
- Universitätsspital Zürich, ORL-Klinik, Abteilung für Phoniatrie und Klinische Logopädie, Frauenklinikstr. 24, 8091, Zürich, Schweiz
| | - Helga Breitbach-Snowdon
- Schule für Logopädie, Universitätsklinikum Münster, Kardinal-von-Galen-Ring 10, 48149, Münster, Germany
| | | | - Jörg Glahn
- Universitätsklinik für Neurologie und Neurogeriatrie, Johannes Wesling Klinikum Minden, Hans-Nolte Strasse 1, 32429, Minden, Germany
| | - Hans-Jürgen Heppner
- Private Universität Witten/Herdecke gGmbH, Alfred-Herrhausen-Straße 50, 58448, Witten, Germany
| | - Karl Hörmann
- University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christian Ledl
- Abteilung Sprach-, Sprech- und Schlucktherapie, Schön Klinik Bad Aibling SE & Co. KG, Kolbermoorer Str. 72, 83043, Bad Aibling, Germany
| | - Christoph Lücking
- Schön Klinik München Schwabing, Parzivalplatz 4, 80804, München, Germany
| | - Peter Pokieser
- Medizinische Universität Wien, Teaching Center / Unified Patient Program, AKH Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - Joerg C Schefold
- Universitätsklinik für Intensivmedizin, Inselspital, Universitätsspital Bern, 3010, Bern, Schweiz
| | | | - Kathi Schweikert
- REHAB Basel, Klinik für Neurorehabilitation und Paraplegiologie, Im Burgfelderhof 40, 4012, Basel, Schweiz
| | - Roland Sparing
- VAMED Klinik Hattingen GmbH, Rehabilitationszentrum für Neurologie, Neurochirurgie, Neuropädiatrie, Am Hagen 20, 45527, Hattingen, Germany
| | - Michaela Trapl-Grundschober
- Klinische Abteilung für Neurologie, Therapeutischer Dienst, Universitätsklinikum Tulln, Karl Landsteiner Privatuniversität für Gesundheitswissenschaften, Alter Ziegelweg 10, 3430, Tulln an der Donau, Österreich
| | - Claus Wallesch
- BDH-Klinik Elzach gGmbH, Am Tannwald 1, 79215, Elzach, Germany
| | - Tobias Warnecke
- Klinik für Neurologie, Universitätsklinik Münster, 48149 Münster, Germany
| | - Cornelius J Werner
- Sektion Interdisziplinäre Geriatrie, Klinik für Neurologie, Medizinische Fakultät, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Johannes Weßling
- Zentrum für Radiologie, Neuroradiologie und Nuklearmedizin, Clemenskrankenhaus Münster, Düesbergweg 124, 48153, Münster, Germany
| | - Rainer Wirth
- Klinik für Altersmedizin und Frührehabilitation, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Katholische Kliniken Rhein-Ruhr, Hölkeskampring 40, 44625, Herne, Germany
| | - Christina Pflug
- Klinik und Poliklinik für Hör-, Stimm- und Sprachheilkunde, Universitäres Dysphagiezentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
11
|
Suntrup-Krueger S, Muhle P, Kampe I, Egidi P, Ruck T, Lenze F, Jungheim M, Gminski R, Labeit B, Claus I, Warnecke T, Gross J, Dziewas R. Effect of Capsaicinoids on Neurophysiological, Biochemical, and Mechanical Parameters of Swallowing Function. Neurotherapeutics 2021; 18:1360-1370. [PMID: 33449304 PMCID: PMC8423940 DOI: 10.1007/s13311-020-00996-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/25/2023] Open
Abstract
Oropharyngeal dysphagia is prevalent in age-related neurological disorders presenting with impaired efficacy and safety of swallowing due to a loss of muscle force and sensory deficits. Stimulating the oropharynx with capsaicin that mediates Substance P release is an emerging pharmacological treatment option which needs further scientific evidence. Our aim was to comprehensively evaluate the effect of capsaicin on biochemical, neurophysiological, and biomechanical parameters of swallowing function. In a randomized study on healthy individuals, the impact of orally administered capsaicinoids at different dosages and application durations in comparison to non-carbonated water was evaluated. Time course and magnitude of salivary Substance P increase were monitored. Magnetoencephalography was used to detect cortical swallowing network alterations. Modifications in swallowing biomechanics were measured applying high-resolution pharyngeal manometry. Capsaicinoids at 10 μmol/L improved swallowing efficacy as seen by a significant increase of pharyngeal contractile integral and upper esophageal sphincter activation and relaxation times in manometry. Significant improvement of precision in a challenging swallow task accompanied by a reduction in swallowing-related submental electromyographic power was observed with capsaicinoids preconditioning at 10 μmol/L over 5 min, but not with continuous stimulation. The cortical activation pattern remained unchanged after any intervention. A significant increase of salivary Substance P was not detected with 10 μmol/L but with 50 μmol/L and lasted for 15 min after application. Capsaicinoids mediate dose-dependent Substance P release and positively alter swallowing biomechanics in healthy subjects. The results provide supportive evidence for the value of natural capsaicinoids to improve swallowing function.
Collapse
Affiliation(s)
- Sonja Suntrup-Krueger
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1 A, 48149, Muenster, Germany.
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Muenster, Malmedyweg 15, 48149, Muenster, Germany.
| | - Paul Muhle
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1 A, 48149, Muenster, Germany
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Muenster, Malmedyweg 15, 48149, Muenster, Germany
| | - Isabella Kampe
- Pediatrics Department, St. Franziskus-Hospital Ahlen, Robert-Koch-Straße 55, 59227, Ahlen, Germany
| | - Paula Egidi
- Department of Anesthesiology and Intensive Care Medicine, Clemenshospital Münster, Duesbergweg 124, 48153, Muenster, Germany
| | - Tobias Ruck
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1 A, 48149, Muenster, Germany
| | - Frank Lenze
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Muenster, Albert-Schweitzer-Campus 1 A, 48149, Muenster, Germany
| | - Michael Jungheim
- Department of Phoniatrics and Pediatric Audiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Richard Gminski
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Bendix Labeit
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1 A, 48149, Muenster, Germany
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Muenster, Malmedyweg 15, 48149, Muenster, Germany
| | - Inga Claus
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1 A, 48149, Muenster, Germany
| | - Tobias Warnecke
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1 A, 48149, Muenster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Muenster, Malmedyweg 15, 48149, Muenster, Germany
| | - Rainer Dziewas
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1 A, 48149, Muenster, Germany
| |
Collapse
|
12
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Chemosensory Ion Channels in Peripheral Swallowing-Related Regions for the Management of Oropharyngeal Dysphagia. Int J Mol Sci 2020; 21:E6214. [PMID: 32867366 PMCID: PMC7503421 DOI: 10.3390/ijms21176214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Oropharyngeal dysphagia, or difficulty in swallowing, is a major health problem that can lead to serious complications, such as pulmonary aspiration, malnutrition, dehydration, and pneumonia. The current clinical management of oropharyngeal dysphagia mainly focuses on compensatory strategies and swallowing exercises/maneuvers; however, studies have suggested their limited effectiveness for recovering swallowing physiology and for promoting neuroplasticity in swallowing-related neuronal networks. Several new and innovative strategies based on neurostimulation in peripheral and cortical swallowing-related regions have been investigated, and appear promising for the management of oropharyngeal dysphagia. The peripheral chemical neurostimulation strategy is one of the innovative strategies, and targets chemosensory ion channels expressed in peripheral swallowing-related regions. A considerable number of animal and human studies, including randomized clinical trials in patients with oropharyngeal dysphagia, have reported improvements in the efficacy, safety, and physiology of swallowing using this strategy. There is also evidence that neuroplasticity is promoted in swallowing-related neuronal networks with this strategy. The targeting of chemosensory ion channels in peripheral swallowing-related regions may therefore be a promising pharmacological treatment strategy for the management of oropharyngeal dysphagia. In this review, we focus on this strategy, including its possible neurophysiological and molecular mechanisms.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| |
Collapse
|
13
|
Nakato R, Manabe N, Hanayama K, Kusunoki H, Hata J, Haruma K. Diagnosis and treatments for oropharyngeal dysphagia: effects of capsaicin evaluated by newly developed ultrasonographic method. J Smooth Muscle Res 2020; 56:46-57. [PMID: 32581185 PMCID: PMC7324726 DOI: 10.1540/jsmr.56.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/01/2020] [Indexed: 11/17/2022] Open
Abstract
Oropharyngeal dysphagia (OD) is a common symptom in the older people, and may cause fatal complications such as aspiration pneumonia. However, there is no established treatment for OD. The relationship between the transient receptor potential vanilloid 1 (TRPV1) and substance P released by activated TRPV1 was recently demonstrated. Further, there are several reports showing that capsaicin, a specific agonist of TRPV1, can improve OD. Currently, the evaluation of swallowing is mainly performed by videofluoroscopic examination. However, there are no reports on the clinical application of ultrasonography using tissue Doppler imaging. In this review, we describe the pathophysiology and treatments for OD, introduce our novel US method to evaluate cervical esophageal motility, and then outline our clinical study examining the effects of capsaicin, a specific TRPV1 agonist, in older patients with OD.
Collapse
Affiliation(s)
- Rui Nakato
- Division of Endoscopy and Ultrasonography, Department
of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School,
Kurashiki, Japan
| | - Noriaki Manabe
- Division of Endoscopy and Ultrasonography, Department
of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School,
Kurashiki, Japan
| | - Kozo Hanayama
- Department of Rehabilitation Medicine, Kawasaki
Medical School, Kurashiki, Japan
| | - Hiroaki Kusunoki
- Department of General Medicine, Kawasaki Medical
School, Kurashiki, Japan
| | - Jiro Hata
- Division of Endoscopy and Ultrasonography, Department
of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School,
Kurashiki, Japan
| | - Ken Haruma
- Department of General Internal Medicine 2, Kawasaki
Medical School, Kurashiki, Japan
| |
Collapse
|
14
|
Gould FDH, Lammers AR, Mayerl CJ, German RZ. Specific Vagus Nerve Lesion Have Distinctive Physiologic Mechanisms of Dysphagia. Front Neurol 2019; 10:1301. [PMID: 31920925 PMCID: PMC6920241 DOI: 10.3389/fneur.2019.01301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023] Open
Abstract
Swallowing is complex at anatomical, functional, and neurological levels. The connections among these levels are poorly understood, yet they underpin mechanisms of swallowing pathology. The complexity of swallowing physiology means that multiple failure points may exist that lead to the same clinical diagnosis (e.g., aspiration). The superior laryngeal nerve (SLN) and the recurrent laryngeal nerve (RLN) are branches of the vagus that innervate different structures involved in swallowing. Although they have distinct sensory fields, lesion of either nerve is associated clinically with increased aspiration. We tested the hypothesis that despite increased aspiration in both case, oropharyngeal kinematic changes and their relationship to aspiration would be different in RLN and SLN lesioned infant pigs. We compared movements of the tongue and epiglottis in swallows before and after either RLN or SLN lesion. We rated swallows for airway protection. Posterior tongue ratio of safe swallows changed in RLN (p = 0.01) but not SLN lesioned animals. Unsafe swallows post lesion had different posterior tongue ratios in RLN and SLN lesioned animals. Duration of epiglottal inversion shortened after lesion in SLN animals (p = 0.02) but remained unchanged in RLN animals. Thus, although SLN and RLN lesion lead to the same clinical outcome (increased aspiration), the mechanisms of failure of airway protection are different, which suggests that effective therapies may be different with each injury. Understanding the specific pathophysiology of swallowing associated with specific neural insults will help develop targeted, disease appropriate treatments.
Collapse
Affiliation(s)
- François D H Gould
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Andrew R Lammers
- School of Health Sciences, Cleveland State University, Cleveland, OH, United States
| | | | - Rebecca Z German
- Department of Anatomy and Neurobiology, NEOMED, Rootstown, OH, United States
| |
Collapse
|
15
|
Wang Z, Wu L, Fang Q, Shen M, Zhang L, Liu X. Effects of capsaicin on swallowing function in stroke patients with dysphagia: A randomized controlled trial. J Stroke Cerebrovasc Dis 2019; 28:1744-1751. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/05/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022] Open
|
16
|
ESPEN guideline clinical nutrition in neurology. Clin Nutr 2018; 37:354-396. [DOI: 10.1016/j.clnu.2017.09.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
|
17
|
Prosiegel M. Mit Schluckstörungen assoziierte neurologische Erkrankungen. SCHLUCKSTÖRUNGEN 2018:61-87. [DOI: 10.1016/b978-3-437-44417-3.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Ortega O, Rofes L, Martin A, Arreola V, López I, Clavé P. A Comparative Study Between Two Sensory Stimulation Strategies After Two Weeks Treatment on Older Patients with Oropharyngeal Dysphagia. Dysphagia 2016; 31:706-16. [DOI: 10.1007/s00455-016-9736-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|