1
|
Sarmet M, Kaczmarek E, Fauveau A, Steer K, Velasco AA, Smith A, Kennedy M, Shideler H, Wallace S, Stroud T, Blilie M, Mayerl CJ. A Machine Learning Pipeline for Automated Bolus Segmentation and Area Measurement in Swallowing Videofluoroscopy Images of an Infant Pig Model. Dysphagia 2025:10.1007/s00455-025-10829-z. [PMID: 40293507 DOI: 10.1007/s00455-025-10829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Feeding efficiency and safety are often driven by bolus volume, which is one of the most common clinical measures of assessing swallow performance. However, manual measurement of bolus area is time-consuming and suffers from high levels of inter-rater variability. This study proposes a machine learning (ML) pipeline using ilastik, an accessible bioimage analysis tool, to automate the measurement of bolus area during swallowing. The pipeline was tested on 336 swallows from videofluoroscopic recordings of 8 infant pigs during bottle feeding. Eight trained raters manually measured bolus area in ImageJ and also used ilastik's autocontext pixel-level labeling and object classification tools to train ML models for automated bolus segmentation and area calculation. The ML pipeline trained in 1h42min and processed the dataset in 2 min 48s, a 97% time saving compared to manual methods. The model exhibited strong performance, achieving a high Dice Similarity Coefficient (0.84), Intersection over Union (0.76), and inter-rater reliability (intraclass correlation coefficient = 0.79). The bolus areas from the two methods were highly correlated (R² = 0.74 overall, 0.78 without bubbles, 0.67 with bubbles), with no significant difference in measured bolus area between the methods. Our ML pipeline, requiring no ML expertise, offers a reliable and efficient method for automatically measuring bolus area. While human confirmation remains valuable, this pipeline accelerates analysis and improves reproducibility compared to manual methods. Future refinements can further enhance precision and broaden its application in dysphagia research.
Collapse
Affiliation(s)
- Max Sarmet
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.
- Graduate Department of Health Science and Technology, University of Brasilia, Brasilia, 70910-900, Brazil.
| | - Elska Kaczmarek
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Alexane Fauveau
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kendall Steer
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Alex-Ann Velasco
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Ani Smith
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Maressa Kennedy
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Hannah Shideler
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Skyler Wallace
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Thomas Stroud
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Morgan Blilie
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Christopher J Mayerl
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
2
|
Anwar A, Khalifa Y, Lucatorto E, Coyle JL, Sejdic E. Towards a comprehensive bedside swallow screening protocol using cross-domain transformation and high-resolution cervical auscultation. Artif Intell Med 2024; 154:102921. [PMID: 38991399 DOI: 10.1016/j.artmed.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
High-resolution cervical auscultation (HRCA) is an emerging noninvasive and accessible option to assess swallowing by relying upon accelerometry and sound sensors. HRCA has shown tremendous promise and accuracy in identifying and predicting swallowing physiology and biomechanics with accuracies equivalent to trained human judges. These insights have historically been available only through instrumental swallowing evaluation methods, such as videofluoroscopy and endoscopy. HRCA uses supervised learning techniques to interpret swallowing physiology from the acquired signals, which are collected during radiographic assessment of swallowing using barium contrast. Conversely, bedside swallowing screening is typically conducted in non-radiographic settings using only water. This poses a challenge to translating and generalizing HRCA algorithms to bedside screening due to the rheological differences between barium and water. To address this gap, we proposed a cross-domain transformation framework that uses cycle generative adversarial networks to convert HRCA signals of water swallows into a domain compatible with the barium swallows-trained HRCA algorithms. The proposed framework achieved a cross-domain transformation accuracy that surpassed 90%. The authenticity of the generated signals was confirmed using a binary classifier to confirm the framework's capability to produce indistinguishable signals. This framework was also assessed for retaining swallow physiological and biomechanical properties in the signals by applying an existing model from the literature that identifies the opening and closure of the upper esophageal sphincter. The outcomes of this model showed nearly identical results between the generated and original signals. These findings suggest that the proposed transformation framework is a feasible avenue to advance HCRA towards clinical deployment for water-based swallowing screenings.
Collapse
Affiliation(s)
- Ayman Anwar
- Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
| | - Yassin Khalifa
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA; Information Technology Analytics, University of Pittsburgh, Pittsburgh, PA, USA; Systems and Biomedical Engineering, Cairo University, Giza, Egypt.
| | - Erin Lucatorto
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ervin Sejdic
- Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada; North York General Hospital, Toronto, ON, Canada.
| |
Collapse
|
3
|
Werden Abrams S, Petersen C, Beall J, Namasivayam-MacDonald A, Choi D, Garand KL(F. Factors Influencing Laryngeal Vestibular Closure in Healthy Adults. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:3844-3855. [PMID: 37751725 PMCID: PMC10713015 DOI: 10.1044/2023_jslhr-22-00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/31/2023] [Accepted: 07/06/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE Our study aims were (a) to examine laryngeal vestibular closure (LVC) temporal measures in healthy adults across tasks used in the Modified Barium Swallow Impairment Profile (MBSImP) protocol to establish normative reference values and (b) to examine influences of age, gender, and swallow task on LVC temporal measures. METHOD A retrospective analysis of 195 healthy adults (85 men, 110 women; age range: 21-89 years) who participated in a videofluoroscopic swallowing study was completed. Seven swallow tasks of standardized viscosities and volumes, as per the MBSImP protocol, were analyzed to measure time-to-LVC and LVC duration (LVCd). Descriptive statistics were employed for all measures of interest. Regression modeling was used to explore relationships between LVC temporal measures (time-to-LVC, LVCd) with age, gender, and swallow task. The relationship between time-to-LVC and LVCd was also explored. RESULTS Significant findings included an increasing trend in LVCd across age (older individuals had a longer LVCd), with women demonstrating a greater increase. Related to viscosity, LVCd was significantly shorter for pudding compared to thin liquid. Furthermore, when compared to 5-ml tasks, LVCd was significantly longer in cup tasks, while time-to-LVC was significantly shorter. An association was also observed between time-to-LVC and LVCd: As time-to-LVC decreased, LVCd increased. CONCLUSIONS LVCd was influenced by age, gender, and swallow task. Longer time-to-LVC was observed in older individuals, particularly older women, and with thin liquids. Study findings contribute to adult normative reference values for LVC temporal measures (time-to-LVC and LVCd) across MBSImP swallowing tasks. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24126432.
Collapse
Affiliation(s)
- Sophia Werden Abrams
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Courtney Petersen
- Department of Speech Pathology and Audiology, University of South Alabama, Mobile
| | - Jonathan Beall
- Department of Public Health Sciences, Medical University of South Carolina, Charleston
| | | | - Dahye Choi
- Department of Speech Pathology and Audiology, University of South Alabama, Mobile
| | | |
Collapse
|
4
|
Shu K, Perera S, Mahoney AS, Mao S, Coyle JL, Sejdić E. Temporal Sequence of Laryngeal Vestibule Closure and Reopening is Associated With Airway Protection. Laryngoscope 2023; 133:521-527. [PMID: 35657100 PMCID: PMC9718890 DOI: 10.1002/lary.30222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Upper esophageal sphincter opening (UESO), and laryngeal vestibule closure (LVC) are two essential kinematic events whose timings are crucial for adequate bolus clearance and airway protection during swallowing. Their temporal characteristics can be quantified through time-consuming analysis of videofluoroscopic swallow studies (VFSS). OBJECTIVES We sought to establish a model to predict the odds of penetration or aspiration during swallowing based on 15 temporal factors of UES and laryngeal vestibule kinematics. METHODS Manual temporal measurements and ratings of penetration and aspiration were conducted on a videofluoroscopic dataset of 408 swallows from 99 patients. A generalized estimating equation model was deployed to analyze association between individual factors and the risk of penetration or aspiration. RESULTS The results indicated that the latencies of laryngeal vestibular events and the time lapse between UESO onset and LVC were highly related to penetration or aspiration. The predictive model incorporating patient demographics and bolus presentation showed that delayed LVC by 0.1 s or delayed LVO by 1% of the swallow duration (average 0.018 s) was associated with a 17.19% and 2.68% increase in odds of airway invasion, respectively. CONCLUSION This predictive model provides insight into kinematic factors that underscore the interaction between the intricate timing of laryngeal kinematics and airway protection. Recent investigation in automatic noninvasive or videofluoroscopic detection of laryngeal kinematics would provide clinicians access to objective measurements not commonly quantified in VFSS. Consequently, the temporal and sequential understanding of these kinematics may interpret such measurements to an estimation of the risk of aspiration or penetration which would give rise to rapid computer-assisted dysphagia diagnosis. LEVEL OF EVIDENCE 2 Laryngoscope, 133:521-527, 2023.
Collapse
Affiliation(s)
- Kechen Shu
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subashan Perera
- Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amanda S. Mahoney
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James L. Coyle
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Otolaryngology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ervin Sejdić
- Edward S. Rogers Department of Electrical and Computer Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
- North York General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Khalifa Y, Mahoney AS, Lucatorto E, Coyle JL, Sejdić E. Non-Invasive Sensor-Based Estimation of Anterior-Posterior Upper Esophageal Sphincter Opening Maximal Distension. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:182-190. [PMID: 36873304 PMCID: PMC9976940 DOI: 10.1109/jtehm.2023.3246919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Dysphagia management relies on the evaluation of the temporospatial kinematic events of swallowing performed in videofluoroscopy (VF) by trained clinicians. The upper esophageal sphincter (UES) opening distension represents one of the important kinematic events that contribute to healthy swallowing. Insufficient distension of UES opening can lead to an accumulation of pharyngeal residue and subsequent aspiration which in turn can lead to adverse outcomes such as pneumonia. VF is usually used for the temporal and spatial evaluation of the UES opening; however, VF is not available in all clinical settings and may be inappropriate or undesirable for some patients. High resolution cervical auscultation (HRCA) is a noninvasive technology that uses neck-attached sensors and machine learning to characterize swallowing physiology by analyzing the swallow-induced vibrations/sounds in the anterior neck region. We investigated the ability of HRCA to noninvasively estimate the maximal distension of anterior-posterior (A-P) UES opening as accurately as the measurements performed by human judges from VF images. METHODS AND PROCEDURES Trained judges performed the kinematic measurement of UES opening duration and A-P UES opening maximal distension on 434 swallows collected from 133 patients. We used a hybrid convolutional recurrent neural network supported by attention mechanisms which takes HRCA raw signals as input and estimates the value of the A-P UES opening maximal distension as output. RESULTS The proposed network estimated the A-P UES opening maximal distension with an absolute percentage error of 30% or less for more than 64.14% of the swallows in the dataset. CONCLUSION This study provides substantial evidence for the feasibility of using HRCA to estimate one of the key spatial kinematic measurements used for dysphagia characterization and management. Clinical and Translational Impact Statement: The findings in this study have a direct impact on dysphagia diagnosis and management through providing a non-invasive and cheap way to estimate one of the most important swallowing kinematics, the UES opening distension, that contributes to safe swallowing. This study, along with other studies that utilize HRCA for swallowing kinematic analysis, paves the way for developing a widely available and easy-to-use tool for dysphagia diagnosis and management.
Collapse
Affiliation(s)
- Yassin Khalifa
- Department of Biomedical EngineeringCairo UniversityGiza12613Egypt
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of PittsburghPittsburghPA15260USA
- Case Western Reserve University School of MedicineClevelandOH44106USA
- University Hospitals Harrington Heart and Vascular InstituteClevelandOH44106USA
| | - Amanda S. Mahoney
- Department of Communication Science and DisordersUniversity of PittsburghPittsburghPA15260USA
| | - Erin Lucatorto
- Department of Communication Science and DisordersUniversity of PittsburghPittsburghPA15260USA
| | - James L. Coyle
- Department of Communication Science and DisordersUniversity of PittsburghPittsburghPA15260USA
- Department of OtolaryngologyUniversity of PittsburghPittsburghPA15260USA
| | - Ervin Sejdić
- The Edward S. Rogers Sr. Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of TorontoTorontoONM5S 1A1Canada
- North York General HospitalTorontoONM2K 1E1Canada
| |
Collapse
|
6
|
Khalifa Y, Donohue C, Coyle JL, Sejdic E. Autonomous Swallow Segment Extraction Using Deep Learning in Neck-Sensor Vibratory Signals From Patients With Dysphagia. IEEE J Biomed Health Inform 2023; 27:956-967. [PMID: 36417738 PMCID: PMC10079637 DOI: 10.1109/jbhi.2022.3224323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dysphagia occurs secondary to a variety of underlying etiologies and can contribute to increased risk of adverse events such as aspiration pneumonia and premature mortality. Dysphagia is primarily diagnosed and characterized by instrumental swallowing exams such as videofluoroscopic swallowing studies. videofluoroscopic swallowing studies involve the inspection of a series of radiographic images for signs of swallowing dysfunction. Though effective, videofluoroscopic swallowing studies are only available in certain clinical settings and are not always desirable or feasible for certain patients. Because of the limitations of current instrumental swallow exams, research studies have explored the use of acceleration signals collected from neck sensors and demonstrated their potential in providing comparable radiation-free diagnostic value as videofluoroscopic swallowing studies. In this study, we used a hybrid deep convolutional recurrent neural network that can perform multi-level feature extraction (localized and across time) to annotate swallow segments automatically via multi-channel swallowing acceleration signals. In total, we used signals and videofluoroscopic swallowing study images of 3144 swallows from 248 patients with suspected dysphagia. Compared to other deep network variants, our network was superior at detecting swallow segments with an average area under the receiver operating characteristic curve value of 0.82 (95% confidence interval: 0.807-0.841), and was in agreement with up to 90% of the gold standard-labeled segments.
Collapse
|
7
|
Shu K, Mao S, Coyle JL, Sejdic E. Improving Non-Invasive Aspiration Detection With Auxiliary Classifier Wasserstein Generative Adversarial Networks. IEEE J Biomed Health Inform 2022; 26:1263-1272. [PMID: 34415842 PMCID: PMC8942096 DOI: 10.1109/jbhi.2021.3106565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aspiration is a serious complication of swallowing disorders. Adequate detection of aspiration is essential in dysphagia management and treatment. High-resolution cervical auscultation has been increasingly considered as a promising noninvasive swallowing screening tool and has inspired automatic diagnosis with advanced algorithms. The performance of such algorithms relies heavily on the amount of training data. However, the practical collection of cervical auscultation signal is an expensive and time-consuming process because of the clinical settings and trained experts needed for acquisition and interpretations. Furthermore, the relatively infrequent incidence of severe airway invasion during swallowing studies constrains the performance of machine learning models. Here, we produced supplementary training exemplars for desired class by capturing the underlying distribution of original cervical auscultation signal features using auxiliary classifier Wasserstein generative adversarial networks. A 10-fold subject cross-validation was conducted on 2079 sets of 36-dimensional signal features collected from 189 patients undergoing swallowing examinations. The proposed data augmentation outperforms basic data sampling, cost-sensitive learning and other generative models with significant enhancement. This demonstrates the remarkable potential of proposed network in improving classification performance using cervical auscultation signals and paves the way of developing accurate noninvasive swallowing evaluation in dysphagia care.
Collapse
|
8
|
George MM, Tolley NS. AIM in Otolaryngology and Head and Neck Surgery. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
9
|
Schwartz R, Khalifa Y, Lucatorto E, Perera S, Coyle J, Sejdic E. A Preliminary Investigation of Similarities of High Resolution Cervical Auscultation Signals Between Thin Liquid Barium and Water Swallows. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:4900109. [PMID: 34963825 PMCID: PMC8694539 DOI: 10.1109/jtehm.2021.3134926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Dysphagia, commonly referred to as abnormal swallowing, affects millions of people annually. If not diagnosed expeditiously, dysphagia can lead to more severe complications, such as pneumonia, nutritional deficiency, and dehydration. Bedside screening is the first step of dysphagia characterization and is usually based on pass/fail tests in which a nurse observes the patient performing water swallows to look for dysphagia overt signs such as coughing. Though quick and convenient, bedside screening only provides low-level judgment of impairment, lacks standardization, and suffers from subjectivity. Recently, high resolution cervical auscultation (HRCA) has been investigated as a less expensive and non-invasive method to diagnose dysphagia. It has shown strong preliminary evidence of its effectiveness in penetration-aspiration detection as well as multiple swallow kinematics. HRCA signals have traditionally been collected and investigated in conjunction with videofluoroscopy exams which are performed using barium boluses including thin liquid. An HRCA-based bedside screening is highly desirable to expedite the initial dysphagia diagnosis and overcome all the drawbacks of the current pass/fail screening tests. However, all research conducted for using HRCA in dysphagia is based on thin liquid barium boluses and thus not guaranteed to provide valid results for water boluses used in bedside screening. If HRCA signals show no significant differences between water and thin liquid barium boluses, then the same algorithms developed on thin liquid barium boluses used in diagnostic imaging studies, it can be then directly used with water boluses. This study investigates the similarities and differences between HRCA signals from thin liquid barium swallows compared to those signals from water swallows. Multiple features from the time, frequency, time-frequency, and information-theoretic domain were extracted from each type of swallow and a group of linear mixed models was tested to determine the significance of differences. Machine learning classifiers were fit to the data as well to determine if the swallowed material (thin liquid barium or water) can be correctly predicted from an unlabeled set of HRCA signals. The results demonstrated that there is no systematic difference between the HRCA signals of thin liquid barium swallows and water swallows. While no systematic difference was discovered, the evidence of complete conformity between HRCA signals of both materials was inconclusive. These results must be validated further to confirm conformity between the HRCA signals of thin liquid barium swallows and water swallows.
Collapse
Affiliation(s)
- Ryan Schwartz
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of Pittsburgh Pittsburgh PA 15261 USA
| | - Yassin Khalifa
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of Pittsburgh Pittsburgh PA 15261 USA
| | - Erin Lucatorto
- Department of Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Subashan Perera
- Division of Geriatric MedicineDepartment of MedicineUniversity of Pittsburgh Pittsburgh PA 15261 USA
| | - James Coyle
- Department of Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Ervin Sejdic
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of Pittsburgh Pittsburgh PA 15261 USA
- The Edward S. Rogers Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of Toronto Toronto ON M5S 2E4 Canada
- North York General Hospital Toronto ON M2K 1E1 Canada
| |
Collapse
|
10
|
Characterizing Effortful Swallows from Healthy Community Dwelling Adults Across the Lifespan Using High-Resolution Cervical Auscultation Signals and MBSImP Scores: A Preliminary Study. Dysphagia 2021; 37:1103-1111. [PMID: 34537905 PMCID: PMC8449695 DOI: 10.1007/s00455-021-10368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
There is growing enthusiasm to develop inexpensive, non-invasive, and portable methods that accurately assess swallowing and provide biofeedback during dysphagia treatment. High-resolution cervical auscultation (HRCA), which uses acoustic and vibratory signals from non-invasive sensors attached to the anterior laryngeal framework during swallowing, is a novel method for quantifying swallowing physiology via advanced signal processing and machine learning techniques. HRCA has demonstrated potential as a dysphagia screening method and diagnostic adjunct to VFSSs by determining swallowing safety, annotating swallow kinematic events, and classifying swallows between healthy participants and patients with a high degree of accuracy. However, its feasibility as a non-invasive biofeedback system has not been explored. This study investigated 1. Whether HRCA can accurately differentiate between non-effortful and effortful swallows; 2. Whether differences exist in Modified Barium Swallow Impairment Profile (MBSImP) scores (#9, #11, #14) between non-effortful and effortful swallows. We hypothesized that HRCA would accurately classify non-effortful and effortful swallows and that differences in MBSImP scores would exist between the types of swallows. We analyzed 247 thin liquid 3 mL command swallows (71 effortful) to minimize variation from 36 healthy adults who underwent standardized VFSSs with concurrent HRCA. Results revealed differences (p < 0.05) in 9 HRCA signal features between non-effortful and effortful swallows. Using HRCA signal features as input, decision trees classified swallows with 76% accuracy, 76% sensitivity, and 77% specificity. There were no differences in MBSImP component scores between non-effortful and effortful swallows. While preliminary in nature, this study demonstrates the feasibility/promise of HRCA as a biofeedback method for dysphagia treatment.
Collapse
|
11
|
Donohue C, Khalifa Y, Mao S, Perera S, Sejdić E, Coyle JL. Characterizing Swallows From People With Neurodegenerative Diseases Using High-Resolution Cervical Auscultation Signals and Temporal and Spatial Swallow Kinematic Measurements. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:3416-3431. [PMID: 34428093 PMCID: PMC8642099 DOI: 10.1044/2021_jslhr-21-00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Purpose The prevalence of dysphagia in patients with neurodegenerative diseases (ND) is alarmingly high and frequently results in morbidity and accelerated mortality due to subsequent adverse events (e.g., aspiration pneumonia). Swallowing in patients with ND should be continuously monitored due to the progressive disease nature. Access to instrumental swallow evaluations can be challenging, and limited studies have quantified changes in temporal/spatial swallow kinematic measures in patients with ND. High-resolution cervical auscultation (HRCA), a dysphagia screening method, has accurately differentiated between safe and unsafe swallows, identified swallow kinematic events (e.g., laryngeal vestibule closure [LVC]), and classified swallows between healthy adults and patients with ND. This study aimed to (a) compare temporal/spatial swallow kinematic measures between patients with ND and healthy adults and (b) investigate HRCA's ability to annotate swallow kinematic events in patients with ND. We hypothesized there would be significant differences in temporal/spatial swallow measurements between groups and that HRCA would accurately annotate swallow kinematic events in patients with ND. Method Participants underwent videofluoroscopic swallowing studies with concurrent HRCA. We used linear mixed models to compare temporal/spatial swallow measurements (n = 170 ND patient swallows, n = 171 healthy adult swallows) and deep learning machine-learning algorithms to annotate specific temporal and spatial kinematic events in swallows from patients with ND. Results Differences (p < .05) were found between groups for several temporal and spatial swallow kinematic measures. HRCA signal features were used as input to machine-learning algorithms and annotated upper esophageal sphincter (UES) opening, UES closure, LVC, laryngeal vestibule reopening, and hyoid bone displacement with 66.25%, 85%, 68.18%, 70.45%, and 44.6% accuracy, respectively, compared to human judges' measurements. Conclusion This study demonstrates HRCA's potential in characterizing swallow function in patients with ND and other patient populations.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
| | - Subashan Perera
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, PA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, PA
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, PA
| | - James L. Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
- Department of Otolaryngology, School of Medicine, University of Pittsburgh Medical Center, PA
| |
Collapse
|
12
|
Donohue C, Khalifa Y, Mao S, Perera S, Sejdić E, Coyle JL. Establishing Reference Values for Temporal Kinematic Swallow Events Across the Lifespan in Healthy Community Dwelling Adults Using High-Resolution Cervical Auscultation. Dysphagia 2021; 37:664-675. [PMID: 34018024 DOI: 10.1007/s00455-021-10317-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
Few research studies have investigated temporal kinematic swallow events in healthy adults to establish normative reference values. Determining cutoffs for normal and disordered swallowing is vital for differentially diagnosing presbyphagia, variants of normal swallowing, and dysphagia; and for ensuring that different swallowing research laboratories produce consistent results in common measurements from different samples within the same population. High-resolution cervical auscultation (HRCA), a sensor-based dysphagia screening method, has accurately annotated temporal kinematic swallow events in patients with dysphagia, but hasn't been used to annotate temporal kinematic swallow events in healthy adults to establish dysphagia screening cutoffs. This study aimed to determine: (1) Reference values for temporal kinematic swallow events, (2) Whether HRCA can annotate temporal kinematic swallow events in healthy adults. We hypothesized (1) Our reference values would align with a prior study; (2) HRCA would detect temporal kinematic swallow events as accurately as human judges. Trained judges completed temporal kinematic measurements on 659 swallows (N = 70 adults). Swallow reaction time and LVC duration weren't different (p > 0.05) from a previously published historical cohort (114 swallows, N = 38 adults), while other temporal kinematic measurements were different (p < 0.05), suggesting a need for further standardization to feasibly pool data analyses across laboratories. HRCA signal features were used as input to machine learning algorithms and annotated UES opening (69.96% accuracy), UES closure (64.52% accuracy), LVC (52.56% accuracy), and LV re-opening (69.97% accuracy); providing preliminary evidence that HRCA can noninvasively and accurately annotate temporal kinematic measurements in healthy adults to determine dysphagia screening cutoffs.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Subashan Perera
- Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA. .,Department of Otolaryngology, School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
13
|
George MM, Tolley NS. AIM in Otolaryngology and Head & Neck Surgery. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Donohue C, Khalifa Y, Perera S, Sejdić E, Coyle JL. A Preliminary Investigation of Whether HRCA Signals Can Differentiate Between Swallows from Healthy People and Swallows from People with Neurodegenerative Diseases. Dysphagia 2020; 36:635-643. [PMID: 32889627 DOI: 10.1007/s00455-020-10177-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
High-resolution cervical auscultation (HRCA) is an emerging method for non-invasively assessing swallowing by using acoustic signals from a contact microphone, vibratory signals from an accelerometer, and advanced signal processing and machine learning techniques. HRCA has differentiated between safe and unsafe swallows, predicted components of the Modified Barium Swallow Impairment Profile, and predicted kinematic events of swallowing such as hyoid bone displacement, laryngeal vestibular closure, and upper esophageal sphincter opening with a high degree of accuracy. However, HRCA has not been used to characterize swallow function in specific patient populations. This study investigated the ability of HRCA to differentiate between swallows from healthy people and people with neurodegenerative diseases. We hypothesized that HRCA would differentiate between swallows from healthy people and people with neurodegenerative diseases with a high degree of accuracy. We analyzed 170 swallows from 20 patients with neurodegenerative diseases and 170 swallows from 51 healthy age-matched adults who underwent concurrent video fluoroscopy with non-invasive neck sensors. We used a linear mixed model and several supervised machine learning classifiers that use HRCA signal features and a leave-one-out procedure to differentiate between swallows. Twenty-two HRCA signal features were statistically significant (p < 0.05) for predicting whether swallows were from healthy people or from patients with neurodegenerative diseases. Using the HRCA signal features alone, logistic regression and decision trees classified swallows between the two groups with 99% accuracy, 100% sensitivity, and 99% specificity. This provides preliminary research evidence that HRCA can differentiate swallow function between healthy and patient populations.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA.
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Subashan Perera
- Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| |
Collapse
|
15
|
Coyle JL, Sejdić E. High-Resolution Cervical Auscultation and Data Science: New Tools to Address an Old Problem. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 29:992-1000. [PMID: 32650655 PMCID: PMC7844341 DOI: 10.1044/2020_ajslp-19-00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
High-resolution cervical auscultation (HRCA) is an evolving clinical method for noninvasive screening of dysphagia that relies on data science, machine learning, and wearable sensors to investigate the characteristics of disordered swallowing function in people with dysphagia. HRCA has shown promising results in categorizing normal and disordered swallowing (i.e., screening) independent of human input, identifying a variety of swallowing physiological events as accurately as trained human judges. The system has been developed through a collaboration of data scientists, computer-electrical engineers, and speech-language pathologists. Its potential to automate dysphagia screening and contribute to evaluation lies in its noninvasive nature (wearable electronic sensors) and its growing ability to accurately replicate human judgments of swallowing data typically formed on the basis of videofluoroscopic imaging data. Potential contributions of HRCA when videofluoroscopic swallowing study may be unavailable, undesired, or not feasible for many patients in various settings are discussed, along with the development and capabilities of HRCA. The use of technological advances and wearable devices can extend the dysphagia clinician's reach and reinforce top-of-license practice for patients with swallowing disorders.
Collapse
Affiliation(s)
- James L. Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
- Department of Otolaryngology, School of Medicine, University of Pittsburgh, PA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA
| |
Collapse
|
16
|
Donohue C, Mao S, Sejdić E, Coyle JL. Tracking Hyoid Bone Displacement During Swallowing Without Videofluoroscopy Using Machine Learning of Vibratory Signals. Dysphagia 2020; 36:259-269. [PMID: 32419103 DOI: 10.1007/s00455-020-10124-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Identifying physiological impairments of swallowing is essential for determining accurate diagnosis and appropriate treatment for patients with dysphagia. The hyoid bone is an anatomical landmark commonly monitored during analysis of videofluoroscopic swallow studies (VFSSs). Its displacement is predictive of penetration/aspiration and is associated with other swallow kinematic events. However, VFSSs are not always readily available/feasible and expose patients to radiation. High-resolution cervical auscultation (HRCA), which uses acoustic and vibratory signals from a microphone and tri-axial accelerometer, is under investigation as a non-invasive dysphagia screening method and potential adjunct to VFSS when it is unavailable or not feasible. We investigated the ability of HRCA to independently track hyoid bone displacement during swallowing with similar accuracy to VFSS, by analyzing vibratory signals from a tri-axial accelerometer using machine learning techniques. We hypothesized HRCA would track hyoid bone displacement with a high degree of accuracy compared to humans. Trained judges completed frame-by-frame analysis of hyoid bone displacement on 400 swallows from 114 patients and 48 swallows from 16 age-matched healthy adults. Extracted features from vibratory signals were used to train the predictive algorithm to generate a bounding box surrounding the hyoid body on each frame. A metric of relative overlapped percentage (ROP) compared human and machine ratings. The mean ROP for all swallows analyzed was 50.75%, indicating > 50% of the bounding box containing the hyoid bone was accurately predicted in every frame. This provides evidence of the feasibility of accurate, automated hyoid bone displacement tracking using HRCA signals without use of VFSS images.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA.
| |
Collapse
|