1
|
Bruce M, Choi J. Detection of endoscopic looping during colonoscopy procedure by using embedded bending sensors. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:171-191. [PMID: 29849469 PMCID: PMC5965376 DOI: 10.2147/mder.s146934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Looping of the colonoscope shaft during procedure is one of the most common obstacles encountered by colonoscopists. It occurs in 91% of cases with the N-sigmoid loop being the most common, occurring in 79% of cases. Purpose Herein, a novel system is developed that will give a complete three-dimensional (3D) vector image of the shaft as it passes through the colon, to aid the colonoscopist in detecting loops before they form. Patients and methods A series of connected links spans the middle 50% of the shaft, where loops are likely to form. Two potentiometers are attached at each joint to measure angular deflection in two directions to allow for 3D positioning. This 3D positioning is converted into a 3D vector image using computer software. MATLAB software has been used to display the image on a computer monitor. For the different configuration of the colon model, the system determined the looping status. Results Different configurations (N loop, reverse gamma loop, and reverse splenic flexure) of the loops were well defined using 3D vector image. Conclusion The novel sensory system can accurately define the various configuration of the colon during the colonoscopy procedure.
Collapse
Affiliation(s)
- Michael Bruce
- Department of Mechanical Engineering, Ohio University, Athens, OH, USA
| | - JungHun Choi
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA, USA
| |
Collapse
|
2
|
Kurniawan N, Keuchel M. Flexible Gastro-intestinal Endoscopy - Clinical Challenges and Technical Achievements. Comput Struct Biotechnol J 2017; 15:168-179. [PMID: 28179979 PMCID: PMC5294716 DOI: 10.1016/j.csbj.2017.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Flexible gastro-intestinal (GI) endoscopy is an integral diagnostic and therapeutic tool in clinical gastroenterology. High quality standards for safety, patients' comfort, and efficiency have already been achieved. Clinical challenges and technical approaches are discussed in this short review. Image enhanced endoscopy for further characterization of mucosal and vascular patterns includes dye-spray or virtual chromoendoscopy. For confocal laser endoscopy, endocytoscopy, and autofluorescence clinical value has not yet been finally evaluated. An extended viewing field provided by additional cameras in new endoscopes can augment detection of polyps behind folds. Attachable caps, flaps, or balloons can be used to flatten colonic folds for better visualization and stable position. Variable stiffness endoscopes, radiation-free visualization of endoscope position, and different overtube devices help reducing painful loop formation in clinical routine. Computer assisted and super flexible self-propelled colonoscopes for painless sedation-free endoscopy need further research. Single-use devices might minimize the risk of infection transmission in the future. Various exchangeable accessories are available for resection, dissection, tunneling, hemostasis, treatment of stenosis and closure of defects, including dedicated suturing devices. Multiple arm flexible devices controlled via robotic platforms for complex intraluminal and transmural endoscopic procedures require further improvement.
Collapse
Affiliation(s)
- Niehls Kurniawan
- Klinik für Innere Medizin, Bethesda Krankenhaus Bergedorf, Akademisches Lehrkrankenhaus der Universität Hamburg, Glindersweg 80, 21029, Hamburg, Germany
| | - Martin Keuchel
- Klinik für Innere Medizin, Bethesda Krankenhaus Bergedorf, Akademisches Lehrkrankenhaus der Universität Hamburg, Glindersweg 80, 21029, Hamburg, Germany
| |
Collapse
|
3
|
Kang B, Kojcev R, Sinibaldi E. The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader. PLoS One 2016; 11:e0150278. [PMID: 26914328 PMCID: PMC4767230 DOI: 10.1371/journal.pone.0150278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 02/11/2016] [Indexed: 11/18/2022] Open
Abstract
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader.
Collapse
Affiliation(s)
- Byungjeon Kang
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Risto Kojcev
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Edoardo Sinibaldi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, Italy
| |
Collapse
|
4
|
Nakadate R, Arata J, Hashizume M. Next-generation robotic surgery--from the aspect of surgical robots developed by industry. MINIM INVASIV THER 2015; 24:2-7. [PMID: 25627433 DOI: 10.3109/13645706.2014.1003140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.
Collapse
Affiliation(s)
- Ryu Nakadate
- Center for Advanced Medical Innovation, Kyushu University , Kyushu , Japan
| | | | | |
Collapse
|
5
|
Kato T, Okumura I, Kose H, Takagi K, Hata N. Tendon-driven continuum robot for neuroendoscopy: validation of extended kinematic mapping for hysteresis operation. Int J Comput Assist Radiol Surg 2015; 11:589-602. [PMID: 26476639 DOI: 10.1007/s11548-015-1310-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE The hysteresis operation is an outstanding issue in tendon-driven actuation--which is used in robot-assisted surgery--as it is incompatible with kinematic mapping for control and trajectory planning. Here, a new tendon-driven continuum robot, designed to fit existing neuroendoscopes, is presented with kinematic mapping for hysteresis operation. METHODS With attention to tension in tendons as a salient factor of the hysteresis operation, extended forward kinematic mapping (FKM) has been developed. In the experiment, the significance of every component in the robot for the hysteresis operation has been investigated. Moreover, the prediction accuracy of postures by the extended FKM has been determined experimentally and compared with piecewise constant curvature assumption. RESULTS The tendons were the most predominant factor affecting the hysteresis operation of the robot. The extended FKM including friction in tendons predicted the postures in the hysteresis operation with improved accuracy (2.89 and 3.87 mm for the single and the antagonistic-tendons layouts, respectively). The measured accuracy was within the target value of 5 mm for planning of neuroendoscopic resection of intraventricle tumors. CONCLUSION The friction in tendons was the most predominant factor for the hysteresis operation in the robot. The extended FKM including this factor can improve prediction accuracy of the postures in the hysteresis operation. The trajectory of the new robot can be planned within target value for the neuroendoscopic procedure by using the extended FKM.
Collapse
Affiliation(s)
- Takahisa Kato
- National Center for Image Guided Therapy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, MA, USA
| | | | | | | | - Nobuhiko Hata
- National Center for Image Guided Therapy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Tapia-Siles SC, Coleman S, Cuschieri A. Current state of micro-robots/devices as substitutes for screening colonoscopy: assessment based on technology readiness levels. Surg Endosc 2015; 30:404-413. [PMID: 26092000 DOI: 10.1007/s00464-015-4263-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous reports have described several candidates, which have the potential to replace colonoscopy, but to date, there is still no device capable of fully replacing flexible colonoscopy in the management of colonic disorders and for mass adult population screening for asymptomatic colorectal cancer. MATERIALS AND METHODS NASA developed the TRL methodology to describe and define the stages of development before use and marketing of any device. The definitions of the TRLS used in the present review are those formulated by "The US Department of Defense Technology Readiness Assessment Guidance" but adapted to micro-robots for colonoscopy. All the devices included are reported in scientific literature. They were identified by a systematic search in Web of Science, PubMed and IEEE Xplore amongst other sources. Devices that clearly lack the potential for full replacement of flexible colonoscopy were excluded. ASSESSMENT OF THE CURRENT SITUATION The technological salient features of all the devices included for assessment are described briefly, with particular focus on device propulsion. The devices are classified according to the TRL criteria based on the reported information. An analysis is next undertaken of the characteristics and salient features of the devices included in the review: wireless/tethered devices, data storage-transmission and navigation, additional functionality, residual technology challenges and clinical and socio-economical needs. CONCLUSIONS Few devices currently possess the required functionality and performance to replace the conventional colonoscopy. The requirements, including functionalities which favour the development of a micro-robot platform to replace colonoscopy, are highlighted.
Collapse
Affiliation(s)
- Silvia C Tapia-Siles
- Surgical Technology and Robotics Group, Institute for Medical Science and Technology (IMSaT), University of Dundee, Dundee, DD2 1FD, UK
| | - Stuart Coleman
- Surgical Technology and Robotics Group, Institute for Medical Science and Technology (IMSaT), University of Dundee, Dundee, DD2 1FD, UK
| | - Alfred Cuschieri
- Surgical Technology and Robotics Group, Institute for Medical Science and Technology (IMSaT), University of Dundee, Dundee, DD2 1FD, UK.
| |
Collapse
|
7
|
Patel N, Darzi A, Teare J. The endoscopy evolution: 'the superscope era'. Frontline Gastroenterol 2015; 6:101-107. [PMID: 25878767 PMCID: PMC4392308 DOI: 10.1136/flgastro-2014-100448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/20/2014] [Indexed: 02/04/2023] Open
Abstract
Developments to the design of the flexible endoscope are transforming the field of gastroenterology. There is a drive to improve colonic adenoma detection rates leading to advancements in the design of the colonoscope. Novel endoscopes now allow increased visualisation of colonic mucosa, including behind colonic folds, and aim to reduce pain associated with the procedure. In addition, a shift in surgical paradigm towards minimally invasive endoluminal surgery has meant innovations in flexible platforms are being sought. There are a number of limitations of the basic endoscope. These include a lack of stability and triangulation of instruments. Modifications to the flexible endoscope design form the basis of a number of newly developed and research platforms, some of which are discussed in this review.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Surgery and Cancer , Imperial College London , London , UK
| | - Ara Darzi
- Department of Surgery and Cancer , Imperial College London , London , UK
| | - Julian Teare
- Department of Surgery and Cancer , Imperial College London , London , UK
| |
Collapse
|
8
|
Sliker LJ, Ciuti G. Flexible and capsule endoscopy for screening, diagnosis and treatment. Expert Rev Med Devices 2014; 11:649-66. [PMID: 25148269 DOI: 10.1586/17434440.2014.941809] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endoscopy dates back to the 1860s, but many of the most significant advancements have been made within the past decade. With the integration of robotics, the ability to precisely steer and advance traditional flexible endoscopes has been realized, reducing patient pain and improving clinician ergonomics. Additionally, wireless capsule endoscopy, a revolutionary alternative to traditional scopes, enables inspection of the digestive system with minimal discomfort for the patient or the need for sedation, mitigating some of the risks of flexible endoscopy. This review presents a research update on robotic endoscopic systems, including both flexible scope and capsule technologies, detailing actuation methods and therapeutic capabilities. A future perspective on endoscopic potential for screening, diagnostic and therapeutic gastrointestinal procedures is also presented.
Collapse
Affiliation(s)
- Levin J Sliker
- Department of Mechanical Engineering, University of Colorado, 114 ECME, Engineering Center, 1111 Engineering Drive, Boulder, CO 80309-0427, USA
| | | |
Collapse
|
9
|
Patel N, Seneci C, Yang GZ, Darzi A, Teare J. Flexible platforms for natural orifice transluminal and endoluminal surgery. Endosc Int Open 2014; 2:E117-23. [PMID: 26135256 PMCID: PMC4423273 DOI: 10.1055/s-0034-1377171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The flexible endoscope is playing an increasingly pivotal role in minimally invasive transluminal and endoluminal surgery. Whilst the flexible nature of the platform is desirable in order to navigate through the abdominal cavity or through a lumen, there are a number of issues with using the platform for this purpose. The challenges associated with using flexible endoscopes such as a lack of triangulation of instruments and force transmission, which is often inadequate for endoscopic surgery are discussed in this review. As a result of these difficulties, a number of mechanically and robotically driven devices based upon the flexible endoscope are emerging. The design of these devices and potential problems are also reviewed. Finally, future robotic systems which are still in the development and validation stage are briefly discussed. The field of gastroenterology is diverging. The narrowing divide between minimally invasive and endoluminal surgery has led to a surge of innovative and novel devices which may in the future enable precise, seamless and scar less surgery.
Collapse
Affiliation(s)
- Nisha Patel
- St. Mary’s Hospital, Imperial – Gastroenterology, London, United Kingdom,Hamlyn Centre – Robotics and Engineering, London, United Kingdom,Corresponding author Nisha Patel, BSc (Hons), MBBS (Hons), MRCP St. Mary’s Hospital – GastroenterologyPraed St, Paddington, London W2 1NYUnited Kingdom0797167931307971679313
| | - Carlo Seneci
- Hamlyn Centre – Robotics and Engineering, London, United Kingdom
| | - Guang-Zhong Yang
- Hamlyn Centre – Robotics and Engineering, London, United Kingdom
| | - Ara Darzi
- St. Mary’s Hospital, Imperial – Gastroenterology, London, United Kingdom,Hamlyn Centre – Robotics and Engineering, London, United Kingdom
| | - Julian Teare
- St. Mary’s Hospital, Imperial – Gastroenterology, London, United Kingdom,Hamlyn Centre – Robotics and Engineering, London, United Kingdom
| |
Collapse
|
10
|
Abstract
Colorectal cancer is the second leading cause of mortality in men and women in the United States. While there is a definite advantage regarding the use of colonoscopies in screening, there is still a lack of widespread acceptance of colonoscopy use in the general public. This is evident by the fact that up to 75% of patients diagnosed with colorectal cancer present with locally advanced disease. In order to make colonoscopy and in turn colorectal cancer screening a patient friendly and a comfortable test some changes in tool are necessary. The conventional colonoscope has not changed much since its development. There are several new advances in colorectal screening practices. One of the most promising new advances is the advent of robotic endoscopic techniques.
Collapse
Affiliation(s)
- Dan Cater
- Department of Surgery, College of Human Medicine, Michigan State University, Lansing, MI 48912, USA
| | - Arpita Vyas
- Department of Pediatrics, Michigan State University, Lansing, MI 48912, USA
| | - Dinesh Vyas
- Department of Surgery, College of Human Medicine, Michigan State University, Lansing, MI 48912, USA
| |
Collapse
|
11
|
Abstract
Gastrointestinal endoscopy is a rapidly evolving field. Techniques in endoscopy continue to become more sophisticated, as do the devices and platforms, particularly in colonoscopy and endoscopic resection. This article reviews new platforms for endoscopic imaging of the colon, and discusses new endoscopic accessories and developments in endoscopic resection.
Collapse
|
12
|
Obstein KL, Valdastri P. Advanced endoscopic technologies for colorectal cancer screening. World J Gastroenterol 2013; 19:431-9. [PMID: 23382621 PMCID: PMC3558566 DOI: 10.3748/wjg.v19.i4.431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/23/2012] [Accepted: 08/26/2012] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the third most common cancer in men and the second most common cancer in women worldwide. Diagnosing colorectal has been increasingly successful due to advances in technology. Flexible endoscopy is considered to be an effective method for early diagnosis and treatment of gastrointestinal cancer, making it a popular choice for screening programs. However, millions of people who may benefit from endoscopic colorectal cancer screening fail to have the procedure performed. Main reasons include psychological barriers due to the indignity of the procedure, fear of procedure related pain, bowel preparation discomfort, and potential need for sedation. Therefore, an urgent need for new technologies addressing these issues clearly exists. In this review, we discuss a set of advanced endoscopic technologies for colorectal cancer screening that are either already available or close to clinical trial. In particular, we focus on visual-inspection-only advanced flexible colonoscopes, interventional colonoscopes with alternative propulsion mechanisms, wireless capsule colonoscopy, and technologies for intraprocedural bowel cleansing. Many of these devices have the potential to reduce exam related patient discomfort, obviate the need for sedation, increase diagnostic yield, reduce learning curves, improve access to screening, and possibly avert the need for a bowel preparation.
Collapse
|
13
|
|