1
|
Barron M, Hayes H, Bice Z, Pritchard K, Kindel TL. Sleeve Gastrectomy Provides Cardioprotection from Oxidative Stress In Vitro Due to Reduction of Circulating Myeloperoxidase. Nutrients 2023; 15:4776. [PMID: 38004170 PMCID: PMC10675224 DOI: 10.3390/nu15224776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bariatric surgery, including sleeve gastrectomy (SG), improves systolic and diastolic function, which is independent of weight loss in rodent models. The cause of weight loss-independent improvements in cardiac function are unknown but may originate from the gastrointestinal tract. In this study, we investigated whether a circulating blood factor is a mechanism for acute cardioprotection after SG by testing the utility of rodent SG plasma to reduce metabolic stress in vitro. For the initial experiment, obese male Zucker rats underwent SG, ad lib sham, or pair-fed sham surgeries (n = six SG, n = eight SH, n = eight PF). For all other studies, a second group of Zucker rats underwent SG or ad lib sham surgeries (n = eight SH, n = six SG). Six weeks following surgery, plasma was collected from each group, both in the fasting and post-prandial (pp) state. This plasma was then pooled per surgical group and nutrient state and tested in multiple in vitro cell culture and extra-cellular assays to determine the effect of SG on myotubular metabolic stress compared to the sham surgeries. Post-prandial SG plasma (ppSG), but not fasting SG, pp, or fasting sham plasma, reduced the metabolic stress of the H9c2 cells as measured by lactate dehydrogenase (LDH) release (p < 0.01). Unlike SG, weight reduction through pair-feeding did not prevent H9c2 metabolic stress. The PpSG plasma had the slowest rate of extracellular hydrogen peroxide consumption and peroxidatic activity compared to the pp sham, fasting SG, and fasting sham groups. Redox testing of plasma with aminiobenzoic acid hydrazide and edaravone suggested a pattern supporting myeloperoxidase (MPO), or other peroxidases, as the primary component responsible for reduced metabolic stress with ppSG plasma. The PpSG plasma contained 35% less circulating MPO protein as compared to the pp sham and fasting SG plasma. The plasma from an MPO global knockout rat also prevented metabolic stress of the H9c2 cells, compared to the significant increase in LDH release from the plasma of the WT controls (p < 0.01). The MPO global knockout plasma also had a rate of extracellular hydrogen peroxide consumption and peroxidatic activity comparable to the ppSG plasma. These studies suggest that one of the weight loss-independent mechanisms by which SG improves myocellular function could be a reduced pro-oxidative environment due to lower circulating levels of MPO. It appears that the gastrointestinal tract is of critical importance to these findings, as the MPO levels were only lowered after enteral, nutrient stimulation in the SG rats. If this surgical effect is confirmed in humans, SG may be a unique surgical treatment for multiple diseases with a pathogenesis of inflammation and oxidative damage, including obesity-associated heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Matthew Barron
- Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI 53226, USA; (M.B.); (H.H.)
| | - Hailey Hayes
- Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI 53226, USA; (M.B.); (H.H.)
| | - Zachary Bice
- Division of Pediatric Surgery, Children’s Research Institute, Milwaukee, WI 53226, USA; (Z.B.); (K.P.)
| | - Kirkwood Pritchard
- Division of Pediatric Surgery, Children’s Research Institute, Milwaukee, WI 53226, USA; (Z.B.); (K.P.)
| | - Tammy Lyn Kindel
- Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI 53226, USA; (M.B.); (H.H.)
| |
Collapse
|
2
|
Fernando DG, Saravia FL, Atkinson SN, Barron M, Kirby JR, Kindel TL. A single, peri-operative antibiotic can persistently alter the post-operative gut microbiome after Roux-en-Y gastric bypass. Surg Endosc 2023; 37:1476-1486. [PMID: 35768736 PMCID: PMC11984501 DOI: 10.1007/s00464-022-09387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) significantly alters the gut microbiome and may be a mechanism for post-operative cardiovascular disease improvement. We have previously found an association between the class of peri-operative, intravenous antibiotic administered at the time of RYGB and the resolution rate of hypertension suggesting the gut microbiome as a mechanism. In this study, we performed a prospective study of RYGB to determine if a single intravenous antibiotic could alter the gastrointestinal microbial composition. METHODS Patients undergoing RYGB were randomized to a single, peri-operative antibiotic of intravenous cefazolin (n = 8) or clindamycin (n = 8). Stool samples were collected from four-time points: 2 weeks pre-op (- 2w), 2 days pre-op (- 2d), 2 weeks post-op (+ 2w) and 3 months post-op (+ 3m). Stool samples were processed for genomic DNA followed by Illumina 16S rRNA gene sequencing and shotgun metagenomic sequencing (MGS). RESULTS A total of 60 stool samples (- 2w, n = 16; - 2d, n = 15; + 2w, n = 16; + 3m, n = 13) from 16 patients were analyzed. 87.5% of patients were female with an average age of 48.6 ± 12.2 years and pre-operative BMI of 50.9 ± 23.3 kg/m2. RYGB induced statistically significant differences in alpha and beta diversity. There were statistically significant differences in alpha diversity at + 2w and beta diversity at + 3m due to antibiotic treatment. MGS revealed significantly distinct gut microbiota with 11 discriminatory metagenomic assembled genomes driven by antibiotic treatment at 3 months post-op, including increased Bifidobacterium spp. with clindamycin. CONCLUSION RYGB induces significant changes in the gut microbiome at 2 weeks that are maintained 3 months after surgery. However, the single peri-operative dose of antibiotic administered at the time of RYGB induces unique and persisting changes to the gut microbiome that are antibiotic-specific. Increased Bifidobacterium spp. with clindamycin administration may improve the metabolic efficacy of RYGB when considering gut-microbiome driven mechanisms for blood pressure resolution.
Collapse
Affiliation(s)
- Deemantha G Fernando
- Department of Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Fatima L Saravia
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Samantha N Atkinson
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
- Center for Microbiome Research, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Matthew Barron
- Department of Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - John R Kirby
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Tammy L Kindel
- Department of Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Effects of Antibiotics on Weight in Obese Patients after Sleeve Gastrectomy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1592786. [PMID: 36193079 PMCID: PMC9526625 DOI: 10.1155/2022/1592786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Obese patients can significantly reduce weight and have a positive impact on obesity-related diseases. However, the risk of infection complications in obese people is higher than that in normal people, especially the surgical site infection. This research investigates the effect of antibiotics on weight change of obese patients after laparoscopic sleeve gastrectomy (LSG). A retrospective analysis was performed on 131 morbidly obese patients or obese patients with complications who received LSG treatment in the Third Hospital of Shanxi Medical University from 2013 to 2020. Patients were separated into the antibiotic group (59 cases) and the normal group (72 cases) according to whether antibiotics were used after surgery. The differences of postoperative weight-related indexes, inflammation-related indexes, and short-term complications were compared between the two groups. At 12-month follow-up, the % excess weight loss (%EWL) in the antibiotic group was statistically abated than that in the normal group (92.99 ± 28.60, P < 0.01). In addition, the percentage of total weight loss (%total weight loss (%TWL)) was abated in the antibiotic group than in the normal group, but it was not significant (P > 0.05). White blood cell count and neutrophil count in the antibiotic group were statistically raised than those in the in normal group (P < 0.05), but neutrophil/lymphocyte ratio (NLR) showed no significant difference. Comparison of short-term postoperative complications between the two groups showed that the number of abdominal wall wound infection, body temperature > 38°C, and abdominal pain > 3 days in the antibiotic group were abated, but they were not statistically significant (P > 0.05). Short-term antibiotic exposure after sleeve gastrectomy had an adverse effect on postoperative weight loss, with no significant improvement in short-term complications.
Collapse
|
4
|
Gutiérrez-Repiso C, Moreno-Indias I, Tinahones FJ. Shifts in gut microbiota and their metabolites induced by bariatric surgery. Impact of factors shaping gut microbiota on bariatric surgery outcomes. Rev Endocr Metab Disord 2021; 22:1137-1156. [PMID: 34287758 DOI: 10.1007/s11154-021-09676-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Evidence suggests that bariatric surgery alters gut microbiota, although its impact at compositional and functional level is not well described. In this review, the most relevant findings, mainly described in Roux-en-Y gastric bypass and sleeve gastrectomy, are outlined. Although the number of studies has increased in the last years, conclusive assertions cannot be elaborated. An issue to address is to know the influence of these alterations on host metabolism and the contribution of gut microbiota derived metabolites. New lines of research have been focusing on analysing gut microbiota functionality rather than evaluating changes at compositional level, and the functions of gut microbiota metabolites in host metabolism, what will bring more relevant information about the influence of gut microbiota in bariatric surgery outcomes. Personalized medicine, because of the predictive value of gut microbiota, is another promising field. The possibility of a specific gut microbiota pattern that could predict type 2 diabetes remission or weight loss failure after bariatric surgery is a matter of great interest. However, little is known about how gut microbiota manipulation could contribute to the beneficial effects of bariatric surgery. Peri-operative antibiotics prophylaxis or probiotic supplementation early after surgery, are strategies barely studied so far, and could constitute a novel tool in the management of weight loss and metabolic profile improvement after surgery.
Collapse
Affiliation(s)
- Carolina Gutiérrez-Repiso
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA) Málaga. Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA) Málaga. Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA) Málaga. Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina Y Dermatología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Moon TS, Van de Putte P, De Baerdemaeker L, Schumann R. The Obese Patient: Facts, Fables, and Best Practices. Anesth Analg 2021; 132:53-64. [PMID: 32282384 DOI: 10.1213/ane.0000000000004772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The prevalence of obesity continues to rise worldwide, and anesthesiologists must be aware of current best practices in the perioperative management of the patient with obesity. Obesity alters anatomy and physiology, which complicates the evaluation and management of obese patients in the perioperative setting. Gastric point-of-care ultrasound (PoCUS) is a noninvasive tool that can be used to assess aspiration risk in the obese patient by evaluating the quantity and quality of gastric contents. An important perioperative goal is adequate end-organ perfusion. Standard noninvasive blood pressure (NIBP) is our best available routine surrogate measurement, but is vulnerable to greater inaccuracy in patients with obesity compared to the nonobese population. Current NIBP methodologies are discussed. Obese patients are at risk for wound and surgical site infections, but few studies conclusively guide the exact dosing of intraoperative prophylactic antibiotics for them. We review evidence for low-molecular-weight heparins and weight-based versus nonweight-based administration of vasoactive medications. Finally, intubation and extubation of the patient with obesity can be complicated, and evidence-based strategies are discussed to mitigate danger during intubation and extubation.
Collapse
Affiliation(s)
- Tiffany S Moon
- From the Department of Anesthesiology and Pain, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Roman Schumann
- Department of Anesthesiology and Perioperative Medicine, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
6
|
Jacobson R, Terranella S, Booker C, Khalid S, Torquati A, Omotosho P. The Impact of Perioperative Antibiotic Prophylaxis on Weight Loss Following Laparoscopic Sleeve Gastrectomy. J Laparoendosc Adv Surg Tech A 2020; 30:998-1000. [DOI: 10.1089/lap.2020.0449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Richard Jacobson
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Samantha Terranella
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Connor Booker
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Syed Khalid
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Alfonso Torquati
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Philip Omotosho
- Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|