1
|
Wan EY, Rogers AJ, Lavelle M, Marcus M, Stone SA, Ottoboni L, Srivatsa U, Leal MA, Russo AM, Jackson LR, Crossley GH. Periprocedural Management and Multidisciplinary Care Pathways for Patients With Cardiac Implantable Electronic Devices: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e183-e196. [PMID: 38984417 PMCID: PMC12068544 DOI: 10.1161/cir.0000000000001264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rapid technological advancements in cardiac implantable electronic devices such as pacemakers, implantable cardioverter defibrillators, and loop recorders, coupled with a rise in the number of patients with these devices, necessitate an updated clinical framework for periprocedural management. The introduction of leadless pacemakers, subcutaneous and extravascular defibrillators, and novel device communication protocols underscores the imperative for clinical updates. This scientific statement provides an inclusive framework for the periprocedural management of patients with these devices, encompassing the planning phase, procedure, and subsequent care coordinated with the primary device managing clinic. Expert contributions from anesthesiologists, cardiac electrophysiologists, and cardiac nurses are consolidated to appraise current evidence, offer patient and health system management strategies, and highlight key areas for future research. The statement, pertinent to a wide range of health care professionals, underscores the importance of quality care pathways for patient safety, optimal device function, and minimization of hemodynamic disturbances or arrhythmias during procedures. Our primary objective is to deliver quality care to the expanding patient cohort with cardiac implanted electronic devices, offering direction in the era of evolving technologies and laying a foundation for sustained education and practice enhancement.
Collapse
|
2
|
Li X, Feng Y, Gong Y, Chen Y. Assessing the Reproducibility of Research Based on the Food and Drug Administration Manufacturer and User Facility Device Experience Data. J Patient Saf 2024; 20:e45-e58. [PMID: 38470959 PMCID: PMC11636620 DOI: 10.1097/pts.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
OBJECTIVE This article aims to assess the reproducibility of Manufacturer and User Facility Device Experience (MAUDE) data-driven studies by analyzing the data queries used in their research processes. METHODS Studies using MAUDE data were sourced from PubMed by searching for "MAUDE" or "Manufacturer and User Facility Device Experience" in titles or abstracts. We manually chose articles with executable queries. The reproducibility of each query was assessed by replicating it in the MAUDE Application Programming Interface. The reproducibility of a query is determined by a reproducibility coefficient that ranges from 0.95 to 1.05. This coefficient is calculated by comparing the number of medical device reports (MDRs) returned by the reproduced queries to the number of reported MDRs in the original studies. We also computed the reproducibility ratio, which is the fraction of reproducible queries in subgroups divided by the query complexity, the device category, and the presence of a data processing flow. RESULTS As of August 8, 2022, we identified 523 articles from which 336 contained queries, and 60 of these were executable. Among these, 14 queries were reproducible. Queries using a single field like product code, product class, or brand name showed higher reproducibility (50%, 33.3%, 31.3%) compared with other fields (8.3%, P = 0.037). Single-category device queries exhibited a higher reproducibility ratio than multicategory ones, but without statistical significance (27.1% versus 8.3%, P = 0.321). Studies including a data processing flow had a higher reproducibility ratio than those without, although this difference was not statistically significant (42.9% versus 17.4%, P = 0.107). CONCLUSIONS Our findings indicate that the reproducibility of queries in MAUDE data-driven studies is limited. Enhancing this requires the development of more effective MAUDE data query strategies and improved application programming interfaces.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee
| | - Yubo Feng
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee
| | - Yang Gong
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - You Chen
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Walayat S, Stadmeyer P, Hameed A, Sarfaraz M, Estrada P, Benson M, Soni A, Pfau P, Hayes P, Kile B, Cruz T, Gopal D. Sedation reversal trends at outpatient ambulatory endoscopic center vs in-hospital ambulatory procedure center using a triage protocol. World J Gastrointest Endosc 2024; 16:413-423. [PMID: 39072249 PMCID: PMC11271719 DOI: 10.4253/wjge.v16.i7.413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Routine outpatient endoscopy is performed across a variety of outpatient settings. A known risk of performing endoscopy under moderate sedation is the potential for over-sedation, requiring the use of reversal agents. More needs to be reported on rates of reversal across different outpatient settings. Our academic tertiary care center utilizes a triage tool that directs higher-risk patients to the in-hospital ambulatory procedure center (APC) for their procedure. Here, we report data on outpatient sedation reversal rates for endoscopy performed at an in-hospital APC vs at a free-standing ambulatory endoscopy digestive health center (AEC-DHC) following risk stratification with a triage tool. AIM To observe the effect of risk stratification using a triage tool on patient outcomes, primarily sedation reversal events. METHODS We observed all outpatient endoscopy procedures performed at AEC-DHC and APC from April 2013 to September 2019. Procedures were stratified to their respective sites using a triage tool. We evaluated each procedure for which sedation reversal with flumazenil and naloxone was recorded. Demographics and characteristics recorded include patient age, gender, body mass index (BMI), American Society of Anesthesiologists (ASA) classification, procedure type, and reason for sedation reversal. RESULTS There were 97366 endoscopic procedures performed at AEC-DHC and 22494 at the APC during the study period. Of these, 17 patients at AEC-DHC and 9 at the APC underwent sedation reversals (0.017% vs 0.04%; P = 0.06). Demographics recorded for those requiring reversal at AEC-DHC vs APC included mean age (53.5 ± 21 vs 60.4 ± 17.42 years; P = 0.23), ASA class (1.66 ± 0.48 vs 2.22 ± 0.83; P = 0.20), BMI (27.7 ± 6.7 kg/m2 vs 23.7 ± 4.03 kg/m2; P = 0.06), and female gender (64.7% vs 22%; P = 0.04). The mean doses of sedative agents and reversal drugs used at AEC-DHC vs APC were midazolam (5.9 ± 1.7 mg vs 8.9 ± 3.5 mg; P = 0.01), fentanyl (147.1 ± 49.9 μg vs 188.9 ± 74.1 μg; P = 0.10), flumazenil (0.3 ± 0.18 μg vs 0.17 ± 0.17 μg; P = 0.13) and naloxone (0.32 ± 0.10 mg vs 0.28 ± 0.12 mg; P = 0.35). Procedures at AEC-DHC requiring sedation reversal included colonoscopies (n = 6), esophagogastroduodenoscopy (EGD) (n = 9) and EGD/colonoscopies (n = 2), whereas APC procedures included EGDs (n = 2), EGD with gastrostomy tube placement (n = 1), endoscopic retrograde cholangiopancreatography (n = 2) and endoscopic ultrasound's (n = 4). The indications for sedation reversal at AEC-DHC included hypoxia (n = 13; 76%), excessive somnolence (n = 3; 18%), and hypotension (n = 1; 6%), whereas, at APC, these included hypoxia (n = 7; 78%) and hypotension (n = 2; 22%). No sedation-related deaths or long-term post-sedation reversal adverse outcomes occurred at either site. CONCLUSION Our study highlights the effectiveness of a triage tool used at our tertiary care hospital for risk stratification in minimizing sedation reversal events during outpatient endoscopy procedures. Using a triage tool for risk stratification, low rates of sedation reversal can be achieved in the ambulatory settings for EGD and colonoscopy.
Collapse
Affiliation(s)
- Saqib Walayat
- Department of Gastroenterology, University of Illinois, Peoria, IL 61605, United States
| | - Peter Stadmeyer
- Department of Gastroenterology, University of Wisconsin, Madison, WI 53792, United States
| | - Azfar Hameed
- Department of Internal Medicine, Texas Health Denton, Denton, TX 76201, United States
| | - Minahil Sarfaraz
- Department of Internal Medicine, Allama Iqbal Medical College, Lahore 042, Pakistan
| | - Paul Estrada
- Department of Gastroenterology, Texas Tech University Health Services Center, El Paso, TX 79911, United States
| | - Mark Benson
- Department of Gastroenterology and Hepatology, University of Wisconsin, Madison, WI 53705, United States
| | - Anurag Soni
- Department of Gastroenterology and Hepatology, University of Wisconsin, Madison, WI 53705, United States
| | - Patrick Pfau
- Department of Gastroenterology and Hepatology, University of Wisconsin, Madison, WI 53705, United States
| | - Paul Hayes
- Finance Business Partners UW Health, University of Wisconsin, Madison, WI 53792, United States
| | - Brittney Kile
- UW Health Digestive Health Center Endoscopy, University of Wisconsin, Madison, WI 53792, United States
| | - Toni Cruz
- UW Health Digestive Health Center Endoscopy, University of Wisconsin, Madison, WI 53792, United States
| | - Deepak Gopal
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin Hospitals and Clinics, Madison, WI 53705, United States
| |
Collapse
|
4
|
Stühlinger M, Burri H, Vernooy K, Garcia R, Lenarczyk R, Sultan A, Brunner M, Sabbag A, Özcan EE, Ramos JT, Di Stolfo G, Suleiman M, Tinhofer F, Aristizabal JM, Cakulev I, Eidelman G, Yeo WT, Lau DH, Mulpuru SK, Nielsen JC, ESC Scientific Document Group:, Heinzel F, Prabhu M, Rinaldi CA, Sacher F, Guillen R, de Pooter J, Gandjbakhch E, Sheldon S, Prenner G, Mason PK, Fichtner S, Nitta T. EHRA consensus on prevention and management of interference due to medical procedures in patients with cardiac implantable electronic devices. Europace 2022; 24:1512-1537. [PMID: 36228183 PMCID: PMC11636572 DOI: 10.1093/europace/euac040] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Affiliation(s)
- Markus Stühlinger
- Department of Internal Medicine III - Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Haran Burri
- Department of Cardiology, University Hospital of Geneva, Geneva, Switzerland
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rodrigue Garcia
- Department of Cardiology, University Hospital of Poitiers, Poitiers, France
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Radoslaw Lenarczyk
- Department of Cardiology, Congenital Heart Disease and Electrotherapy, Medical University of Silesia, Silesian Center of Heart Diseases, Zabrze, Poland
- Medical University of Silesia, Division of Medical Sciences, Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Arian Sultan
- Department of Electrophysiology, Heart Center at University Hospital Cologne, Cologne, Germany
| | - Michael Brunner
- Department of Cardiology and Medical Intensive Care, St Josefskrankenhaus, Freiburg, Germany
| | - Avi Sabbag
- The Davidai Center for Rhythm Disturbances and Pacing, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Emin Evren Özcan
- Heart Rhythm Management Center, Dokuz Eylul University, İzmir, Turkey
| | - Jorge Toquero Ramos
- Cardiac Arrhythmia and Electrophysiology Unit, Cardiology Department, Puerta de Hierro University Hospital, Majadahonda, Madrid, Spain
| | - Giuseppe Di Stolfo
- Cardiac Intensive Care and Arrhythmology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mahmoud Suleiman
- Cardiology/Electrophysiology, Rambam Health Care Campus, Haifa, Israel
| | | | | | - Ivan Cakulev
- University Hospitals of Cleveland, Case Western University, Cleveland, OH, USA
| | - Gabriel Eidelman
- San Isidro’s Central Hospital, Diagnóstico Maipú, Buenos Aires Province, Argentina
| | - Wee Tiong Yeo
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, The University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital, and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Frank Heinzel
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, 13353 Berlin, Germany
| | - Mukundaprabhu Prabhu
- Associate Professor in Cardiology, In charge of EP Division, Kasturba Medical College Manipal, Manipal, Karnataka, India
| | | | - Frederic Sacher
- Bordeaux University Hospital, Univ. Bordeaux, Bordeaux, France
| | - Raul Guillen
- Sanatorio Adventista del Plata, Del Plata Adventist University Entre Rios Argentina, Entre Rios, Argentina
| | - Jan de Pooter
- Professor of Cardiology, Ghent University, Deputy Head of Clinic, Heart Center UZ Gent, Ghent, Belgium
| | - Estelle Gandjbakhch
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Institut de Cardiologie, ICAN, Paris, France
| | - Seth Sheldon
- The Department of Cardiovascular Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | | | - Pamela K Mason
- Director, Electrophysiology Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Stephanie Fichtner
- LMU Klinikum, Medizinische Klinik und Poliklinik I, Campus Großhadern, München, Germany
| | - Takashi Nitta
- Emeritus Professor, Nippon Medical School, Presiding Consultant of Cardiology, Hanyu General Hospital, Saitama, Japan
| |
Collapse
|
5
|
de Carellán Mateo AG, Casamián-Sorrosal D. The perioperative management of small animals with previously implanted pacemakers undergoing anaesthesia. Vet Anaesth Analg 2021; 49:7-17. [PMID: 34916163 DOI: 10.1016/j.vaa.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE There is little information in the veterinary literature about the perioperative management of small animal patients with previously implanted pacemakers undergoing elective or emergency non-cardiac procedures. The purpose of this article is to review the current literature with regard to human patients, with previously implanted pacemakers, undergoing general anaesthesia. Using this and the current information on pacemakers and anaesthesia in dogs and cats, we provide recommendations for small animal patients in this situation. DATABASES USED Google Scholar, PubMed and CAB Abstracts using and interlinking and narrowing the search terms: "dog", "cat", "small animals", "anaesthesia", "pacemaker", "perioperative", "transvenous pacing", "temporary pacing". Scientific reports and human and small animal studies from the reference lists of the retrieved papers were reviewed. In addition, related human and veterinary cardiology and anaesthesia textbooks were also included to create a narrative review of the subject. CONCLUSIONS The best perioperative care for these animals comes from a multidisciplinary approach involving the anaesthetist, cardiologist, surgeon and intensive care unit team. When such an approach is not feasible, the anaesthetist should be familiar with pacemaker technology and how to avoid perioperative complications such as electromagnetic interference, lead damage and reprogramming of the device. The preanaesthetic assessment should be thorough. Information regarding the indication for pacemaker placement, complications during the procedure, location, type and programming of the pacemaker should be readily available. The anaesthetic management of these veterinary patients aims to preserve cardiovascular function while avoiding hypotension, and backup pacing should be available during the perioperative period. Further prospective studies are needed to describe the best perioperative care in small animals with a previously implanted pacemaker.
Collapse
Affiliation(s)
- Alejandra García de Carellán Mateo
- Anaesthesia and Analgesia Service, Teaching Veterinary Hospital, Department of Animal Medicine and Surgery, School of Veterinary Science, Catholic University of Valencia, Valencia, Spain.
| | - Domingo Casamián-Sorrosal
- Cardiology and Interventional Cardiology Service, Teaching Veterinary Hospital, Department of Animal Medicine and Surgery, School of Veterinary Science, Catholic University of Valencia, Valencia, Spain
| |
Collapse
|