1
|
Yamaoka M, Imaeda H, Miyaguchi K, Matsumoto H, Shiomi R, Ohgo H, Hirooka N, Tsuzuki Y, Nakamoto H. Characteristics of Superficial Gastric Neoplasms Detected Not by White Light Imaging but by Linked Color Imaging. JGH Open 2025; 9:e70104. [PMID: 40160828 PMCID: PMC11950147 DOI: 10.1002/jgh3.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 04/02/2025]
Abstract
Background and Aims Laser endoscopy has a linked color imaging (LCI) mode which has been reported to be superior to white light imaging (WLI) in detecting early gastric cancer (EGC). In this study, we retrospectively investigated the characteristics of superficial gastric neoplasms detected not by WLI but by LCI. Patients and Methods From April 2018 to May 2023, EGC or gastric adenoma identified by EGD was observed using LCI after WLI. The size, location, macroscopic type, color, skill level of the endoscopists, and treatment were examined for lesions detected by WLI (WLI group) and lesions detected not by WLI but by LCI (LCI group). Results Eighty-eight lesions of EGCs were differentiated adenocarcinomas, 13 undifferentiated adenocarcinomas, and 28 gastric adenomas. There were 117 lesions (90.7%) in the WLI group and 12 (9.2%) in the LCI group. The mean diameter was 22.9 mm in the WLI group and 9.3 mm in the LCI group, with the latter being significantly smaller (p = 0.003). The numbers of protruding, depressed, and flat lesions were 58, 59, and 0 in the WLI group, and 7, 4, and 1 in the LCI group, respectively, indicating that more protruding lesions were detected in the LCI group (p = 0.005). After multivariate analysis, there was a significant difference in diameter only in the LCI group compared to the WLI group (odds ratio, 0.834; 95% CI, 0.728-0.956). Conclusions LCI is more useful than WLI for detecting smaller superficial gastric neoplasms.
Collapse
Affiliation(s)
- Minoru Yamaoka
- Department of General Internal MedicineSaitama Medical UniversitySaitamaJapan
| | - Hiroyuki Imaeda
- Department of GastroenterologySaitama Medical UniversitySaitamaJapan
| | - Kazuya Miyaguchi
- Department of GastroenterologySaitama Medical UniversitySaitamaJapan
| | - Hisashi Matsumoto
- Department of General Internal MedicineSaitama Medical UniversitySaitamaJapan
| | - Rie Shiomi
- Department of General Internal MedicineSaitama Medical UniversitySaitamaJapan
| | - Hideki Ohgo
- Department of GastroenterologySaitama Medical UniversitySaitamaJapan
| | - Nobutaka Hirooka
- Department of General Internal MedicineSaitama Medical UniversitySaitamaJapan
| | - Yoshikazu Tsuzuki
- Department of GastroenterologySaitama Medical UniversitySaitamaJapan
| | - Hidetomo Nakamoto
- Department of General Internal MedicineSaitama Medical UniversitySaitamaJapan
| |
Collapse
|
2
|
Jukema JB, Kusters CHJ, Jong MR, Fockens KN, Boers T, van der Putten JA, Pouw RE, Duits LC, Weusten BLAM, Herrero LA, Houben MHMG, Nagengast WB, Westerhof J, Alkhalaf A, Mallant-Hent R, Scholten P, Ragunath K, Seewald S, Elbe P, Silva FB, Barret M, Ortiz Fernández-Sordo J, Moral Villarejo G, Pech O, Beyna T, Montazeri NSM, der Sommen FV, de With PH, de Groof AJ, Bergman JJ. Computer-aided diagnosis improves characterization of Barrett's neoplasia by general endoscopists (with video). Gastrointest Endosc 2024; 100:616-625.e8. [PMID: 38636819 DOI: 10.1016/j.gie.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND AIMS Characterization of visible abnormalities in patients with Barrett's esophagus (BE) can be challenging, especially for inexperienced endoscopists. This results in suboptimal diagnostic accuracy and poor interobserver agreement. Computer-aided diagnosis (CADx) systems may assist endoscopists. We aimed to develop, validate, and benchmark a CADx system for BE neoplasia. METHODS The CADx system received pretraining with ImageNet and then consecutive domain-specific pretraining with GastroNet, which includes 5 million endoscopic images. It was subsequently trained and internally validated using 1758 narrow-band imaging (NBI) images of early BE neoplasia (352 patients) and 1838 NBI images of nondysplastic BE (173 patients) from 8 international centers. CADx was tested prospectively on corresponding image and video test sets with 30 cases (20 patients) of BE neoplasia and 60 cases (31 patients) of nondysplastic BE. The test set was benchmarked by 44 general endoscopists in 2 phases (phase 1, no CADx assistance; phase 2, with CADx assistance). Ten international BE experts provided additional benchmark performance. RESULTS Stand-alone sensitivity and specificity of the CADx system were 100% and 98% for images and 93% and 96% for videos, respectively. CADx outperformed general endoscopists without CADx assistance in terms of sensitivity (P = .04). Sensitivity and specificity of general endoscopists increased from 84% to 96% and 90% to 98% with CAD assistance (P < .001). CADx assistance increased endoscopists' confidence in characterization (P < .001). CADx performance was similar to that of the BE experts. CONCLUSIONS CADx assistance significantly increased characterization performance of BE neoplasia by general endoscopists to the level of expert endoscopists. The use of this CADx system may thereby improve daily Barrett surveillance.
Collapse
Affiliation(s)
- Jelmer B Jukema
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carolus H J Kusters
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Martijn R Jong
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kiki N Fockens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tim Boers
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joost A van der Putten
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Roos E Pouw
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lucas C Duits
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bas L A M Weusten
- Department of Gastroenterology and Hepatology, UMC Utrecht, University of Utrecht, Utrecht, the Netherlands; Department of Gastroenterology and Hepatology, Sint Antonius Hospital, Nieuwegein, the Netherlands
| | - Lorenza Alvarez Herrero
- Department of Gastroenterology and Hepatology, Sint Antonius Hospital, Nieuwegein, the Netherlands
| | - Martin H M G Houben
- Department of Gastroenterology and Hepatology, HagaZiekenhuis Den Haag, Den Haag, the Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, the Netherlands
| | - Jessie Westerhof
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, the Netherlands
| | - Alaa Alkhalaf
- Department of Gastroenterology and Hepatology, Isala Hospital Zwolle, Zwolle, the Netherlands
| | - Rosalie Mallant-Hent
- Department of Gastroenterology and Hepatology, Flevoziekenhuis Almere, Almere, the Netherlands
| | - Pieter Scholten
- Department of Gastroenterology and Hepatology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Krish Ragunath
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Curtin University, Perth, WA, Australia
| | - Stefan Seewald
- Department of Gastroenterology and Hepatology, Hirslanden Klinik, Zurich, Switzerland
| | - Peter Elbe
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Division of Surgery, Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Baldaque Silva
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Center for Advanced Endoscopy Carlos Moreira da Silva, Gastroenterology Department, Pedro Hispano Hospital, ULSM Matosinhos, Portugal
| | - Maximilien Barret
- Department of Gastroenterology and Hepatology, Cochin Hospital Paris, Paris, France
| | - Jacobo Ortiz Fernández-Sordo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Guiomar Moral Villarejo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Oliver Pech
- Department of Gastroenterology and Hepatology, St. John of God Hospital, Regensburg, Germany
| | - Torsten Beyna
- Department of Gastroenterology and Hepatology, Evangalisches Krankenhaus Düsseldorf, Düsseldorf, Germany
| | - Nahid S M Montazeri
- Biostatistics Unit, Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Peter H de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - A Jeroen de Groof
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jacques J Bergman
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Fockens KN, Jong MR, Jukema JB, Boers TGW, Kusters CHJ, van der Putten JA, Pouw RE, Duits LC, Montazeri NSM, van Munster SN, Weusten BLAM, Alvarez Herrero L, Houben MHMG, Nagengast WB, Westerhof J, Alkhalaf A, Mallant-Hent RC, Scholten P, Ragunath K, Seewald S, Elbe P, Baldaque-Silva F, Barret M, Ortiz Fernández-Sordo J, Villarejo GM, Pech O, Beyna T, van der Sommen F, de With PH, de Groof AJ, Bergman JJ. A deep learning system for detection of early Barrett's neoplasia: a model development and validation study. Lancet Digit Health 2023; 5:e905-e916. [PMID: 38000874 DOI: 10.1016/s2589-7500(23)00199-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Computer-aided detection (CADe) systems could assist endoscopists in detecting early neoplasia in Barrett's oesophagus, which could be difficult to detect in endoscopic images. The aim of this study was to develop, test, and benchmark a CADe system for early neoplasia in Barrett's oesophagus. METHODS The CADe system was first pretrained with ImageNet followed by domain-specific pretraining with GastroNet. We trained the CADe system on a dataset of 14 046 images (2506 patients) of confirmed Barrett's oesophagus neoplasia and non-dysplastic Barrett's oesophagus from 15 centres. Neoplasia was delineated by 14 Barrett's oesophagus experts for all datasets. We tested the performance of the CADe system on two independent test sets. The all-comers test set comprised 327 (73 patients) non-dysplastic Barrett's oesophagus images, 82 (46 patients) neoplastic images, 180 (66 of the same patients) non-dysplastic Barrett's oesophagus videos, and 71 (45 of the same patients) neoplastic videos. The benchmarking test set comprised 100 (50 patients) neoplastic images, 300 (125 patients) non-dysplastic images, 47 (47 of the same patients) neoplastic videos, and 141 (82 of the same patients) non-dysplastic videos, and was enriched with subtle neoplasia cases. The benchmarking test set was evaluated by 112 endoscopists from six countries (first without CADe and, after 6 weeks, with CADe) and by 28 external international Barrett's oesophagus experts. The primary outcome was the sensitivity of Barrett's neoplasia detection by general endoscopists without CADe assistance versus with CADe assistance on the benchmarking test set. We compared sensitivity using a mixed-effects logistic regression model with conditional odds ratios (ORs; likelihood profile 95% CIs). FINDINGS Sensitivity for neoplasia detection among endoscopists increased from 74% to 88% with CADe assistance (OR 2·04; 95% CI 1·73-2·42; p<0·0001 for images and from 67% to 79% [2·35; 1·90-2·94; p<0·0001] for video) without compromising specificity (from 89% to 90% [1·07; 0·96-1·19; p=0·20] for images and from 96% to 94% [0·94; 0·79-1·11; ] for video; p=0·46). In the all-comers test set, CADe detected neoplastic lesions in 95% (88-98) of images and 97% (90-99) of videos. In the benchmarking test set, the CADe system was superior to endoscopists in detecting neoplasia (90% vs 74% [OR 3·75; 95% CI 1·93-8·05; p=0·0002] for images and 91% vs 67% [11·68; 3·85-47·53; p<0·0001] for video) and non-inferior to Barrett's oesophagus experts (90% vs 87% [OR 1·74; 95% CI 0·83-3·65] for images and 91% vs 86% [2·94; 0·99-11·40] for video). INTERPRETATION CADe outperformed endoscopists in detecting Barrett's oesophagus neoplasia and, when used as an assistive tool, it improved their detection rate. CADe detected virtually all neoplasia in a test set of consecutive cases. FUNDING Olympus.
Collapse
Affiliation(s)
- K N Fockens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - M R Jong
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J B Jukema
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - T G W Boers
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - C H J Kusters
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - J A van der Putten
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - R E Pouw
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - L C Duits
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - N S M Montazeri
- Biostatistics Unit, Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S N van Munster
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - B L A M Weusten
- Department of Gastroenterology and Hepatology, UMC Utrecht, University of Utrecht, Utrecht, Netherlands; Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - L Alvarez Herrero
- Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - M H M G Houben
- Department of Gastroenterology and Hepatology, HagaZiekenhuis Den Haag, Den Haag, Netherlands
| | - W B Nagengast
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, Netherlands
| | - J Westerhof
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, Netherlands
| | - A Alkhalaf
- Department of Gastroenterology and Hepatology, Isala Hospital Zwolle, Zwolle, Netherlands
| | - R C Mallant-Hent
- Department of Gastroenterology and Hepatology, Flevoziekenhuis Almere, Almere, Netherlands
| | - P Scholten
- Department of Gastroenterology and Hepatology, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - K Ragunath
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Curtin University, Perth, WA, Australia
| | - S Seewald
- Department of Gastroenterology and Hepatology, Hirslanden Klinik, Zurich, Switzerland
| | - P Elbe
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - F Baldaque-Silva
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Center for Advanced Endoscopy Carlos Moreira da Silva, Gastroenterology Department, Pedro Hispano Hospital, Matosinhos, Portugal
| | - M Barret
- Department of Gastroenterology and Hepatology, Cochin Hospital Paris, Paris, France
| | - J Ortiz Fernández-Sordo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - G Moral Villarejo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - O Pech
- Department of Gastroenterology and Hepatology, St John of God Hospital, Regensburg, Germany
| | - T Beyna
- Department of Gastroenterology and Hepatology, Evangalisches Krankenhaus Düsseldorf, Düsseldorf, Germany
| | - F van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - P H de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - A J de Groof
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J J Bergman
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
4
|
Lee SP. Role of linked color imaging for upper gastrointestinal disease: present and future. Clin Endosc 2023; 56:546-552. [PMID: 37430400 PMCID: PMC10565447 DOI: 10.5946/ce.2023.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 07/12/2023] Open
Abstract
Techniques for upper gastrointestinal endoscopy are advancing to facilitate lesion detection and improve prognosis. However, most early tumors in the upper gastrointestinal tract exhibit subtle color changes or morphological features that are difficult to detect using white light imaging. Linked color imaging (LCI) has been developed to overcome these shortcomings; it expands or reduces color information to clarify color differences, thereby facilitating the detection and observation of lesions. This article summarizes the characteristics of LCI and advances in LCI-related research in the upper gastrointestinal tract field.
Collapse
Affiliation(s)
- Sang Pyo Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| |
Collapse
|
5
|
Linked Color Imaging for Stomach. Diagnostics (Basel) 2023; 13:diagnostics13030467. [PMID: 36766572 PMCID: PMC9914129 DOI: 10.3390/diagnostics13030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Image-enhanced endoscopy (IEE) plays an important role in the detection and further examination of gastritis and early gastric cancer (EGC). Linked color imaging (LCI) is also useful for detecting and evaluating gastritis, gastric intestinal metaplasia as a pre-cancerous lesion, and EGC. LCI provides a clear excellent endoscopic view of the atrophic border and the demarcation line under various conditions of gastritis. We could recognize gastritis as the lesions of the diffuse redness to purple color area with LCI. On the other hand, EGCs are recognized as the lesions of the orange-red, orange, or orange-white color area in the lesion of the purple color area, which is the surround atrophic mucosa with LCI. With further prospective randomized studies, we will be able to evaluate the diagnosis ability for EGC by IEE, and it will be necessary to evaluate the role of WLI/IEE and the additional effects of the diagnostic ability by adding IEE to WLI in future.
Collapse
|
6
|
Yashima K, Onoyama T, Kurumi H, Takeda Y, Yoshida A, Kawaguchi K, Yamaguchi N, Isomoto H. Current status and future perspective of linked color imaging for gastric cancer screening: a literature review. J Gastroenterol 2023; 58:1-13. [PMID: 36287268 PMCID: PMC9825522 DOI: 10.1007/s00535-022-01934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 02/04/2023]
Abstract
Screening endoscopy has advanced to facilitate improvements in the detection and prognosis of gastric cancer. However, most early gastric cancers (EGCs) have subtle morphological or color features that are difficult to detect by white-light imaging (WLI); thus, even well-trained endoscopists can miss EGC when using this conventional endoscopic approach. This review summarizes the current and future status of linked color imaging (LCI), a new image-enhancing endoscopy (IEE) method, for gastric screening. LCI has been shown to produce bright images even at a distant view and provide excellent visibility of gastric cancer due to high color contrast relative to the surrounding tissue. LCI delineates EGC as orange-red and intestinal metaplasia as purple, regardless of a history of Helicobacter pylori (Hp) eradication, and contributes to the detection of superficial EGC. Moreover, LCI assists in the determination of Hp infection status, which is closely related to the risk of developing gastric cancer. Transnasal endoscopy (ultra-thin) using LCI is also useful for identifying gastric neoplastic lesions. Recently, several prospective studies have demonstrated that LCI has a higher detection ratio for gastric cancer than WLI. We believe that LCI should be used in routine upper gastrointestinal endoscopies.
Collapse
Affiliation(s)
- Kazuo Yashima
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan.
| | - Takumi Onoyama
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Yohei Takeda
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Akira Yoshida
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Koichiro Kawaguchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | - Naoyuki Yamaguchi
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| |
Collapse
|