1
|
Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells. PLoS One 2016; 11:e0153837. [PMID: 27097314 PMCID: PMC4838216 DOI: 10.1371/journal.pone.0153837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 04/05/2016] [Indexed: 01/14/2023] Open
Abstract
Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms.
Collapse
|
2
|
Rakhmanina N, Wong EC, Davis JC, Ray PE. Hemorrhagic Stroke in an Adolescent Female with HIV-Associated Thrombotic Thrombocytopenic Purpura. ACTA ACUST UNITED AC 2014; 5. [PMID: 25429351 PMCID: PMC4241775 DOI: 10.4172/2155-6113.1000311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HIV-1 infection can trigger acute episodes of Idiopathic Thrombocytoponic Purpura (ITP), and Thrombotic Thrombocytopenic Purpura (TTP), particularly in populations with advanced disease and poor adherence to antiretroviral therapy (ART). These diseases should be distinguished because they respond to different treatments. Previous studies done in adults with HIV-TTP have recommended the prompt initiation or re-initiation of ART in parallel with plasma exchange therapy to improve the clinical outcome of these patients. Here, we describe a case of HIV-TTP resulting in an acute hemorrhagic stroke in a 16 year old female with perinatally acquired HIV infection and non-adherence to ART, who presented with severe thrombocytopenia, microangiopathic hemolytic anemia, and a past medical history of HIV-ITP. Both differential diagnosis and treatments for HIV-ITP and HIV-TTP were considered simultaneously. A decrease in plasma ADAMTS13 activity (<5%) without detectable inhibitory antibodies confirmed the diagnosis of HIV-TTP. Re-initiation of ART and plasma exchange resulted in a marked decrease in the HIV-RNA viral load, recovery of the platelet count, and complete recovery was achieved with sustained virologic suppression.
Collapse
Affiliation(s)
- Natella Rakhmanina
- Divisions of Infectious Disease, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA ; Department of Pediatrics, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Edward Cc Wong
- Laboratory Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA ; Department of Pediatrics, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA ; The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Jeremiah C Davis
- Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle WA, USA
| | - Patricio E Ray
- Children's National Medical Center, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA ; Department of Pediatrics, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
3
|
Abstract
The most significant advance in the medical management of HIV-1 infection has been the treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetectable levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever-increasing understanding of the virus replication cycle have been instrumental in this effort by providing researchers with the knowledge and tools required to prosecute drug discovery efforts focused on targeted inhibition with specific pharmacological agents. To date, an arsenal of 24 Food and Drug Administration (FDA)-approved drugs are available for treatment of HIV-1 infections. These drugs are distributed into six distinct classes based on their molecular mechanism and resistance profiles: (1) nucleoside-analog reverse transcriptase inhibitors (NNRTIs), (2) non-nucleoside reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors (PIs), (5) fusion inhibitors, and (6) coreceptor antagonists. In this article, we will review the basic principles of antiretroviral drug therapy, the mode of drug action, and the factors leading to treatment failure (i.e., drug resistance).
Collapse
Affiliation(s)
- Eric J Arts
- Ugandan CFAR Laboratories, Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
4
|
Sanchez-Niño MD, Sanz AB, Ruiz-Andres O, Poveda J, Izquierdo MC, Selgas R, Egido J, Ortiz A. MIF, CD74 and other partners in kidney disease: tales of a promiscuous couple. Cytokine Growth Factor Rev 2012; 24:23-40. [PMID: 22959722 DOI: 10.1016/j.cytogfr.2012.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is increased in kidney and urine during kidney disease. MIF binds to and activates CD74 and chemokine receptors CXCR2 and CXCR4. CD74 is a protein trafficking regulator and a cell membrane receptor for MIF, D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. MIF signaling through CD74 requires CD44. CD74, CD44 and CXCR4 are upregulated in renal cells in diseased kidneys and MIF activation of CD74 in kidney cells promotes an inflammatory response. MIF or CXCR2 targeting protects from experimental kidney injury, CD44 deficiency modulates kidney injury and CXCR4 activation promotes glomerular injury. However, the contribution of MIF or MIF-2 to these actions of MIF receptors has not been explored. The safety and efficacy of strategies targeting MIF, CD74, CD44 and CXCR4 are under study in humans.
Collapse
|
5
|
Mikulak J, Singhal PC. HIV-1 and kidney cells: better understanding of viral interaction. Nephron Clin Pract 2010; 115:e15-21. [PMID: 20407278 DOI: 10.1159/000312882] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV-associated nephropathy (HIVAN) is the most common disease affecting untreated seropositive patients of African descent. Besides genetic (African descent) and HIV-1 infection (environmental), specific host factors such as activation of renin-angiotensin-aldosterone system (RAAS) have also been demonstrated to play a role in the manifestation of HIVAN. The recent identification of MYH9 as susceptible allele is a key step forward in our understanding for the pathogenesis of focal glomerulosclerosis in people of African-American descent. HIV-1 transgenic models have significantly advanced our knowledge base in terms of role of HIV-1 genes in general and individual gene in particular in the development of renal lesions mimicking HIVAN. These studies suggest that viral replication is not needed for the development of renal lesions. Renal biopsy data from HIVAN patients suggest that renal epithelial cells express HIV-1 genes and thus it may be sufficient to invoke HIVAN phenotype in the presence of specific host and genetic factors. On the other hand, immune response to infection may be required to induce HIV-1 associated immune complex kidney disease (HIVICK). Since renal cell lack conventional HIV-1 receptors, HIV-1 entry into renal cells has been a mystery. Recently, non-conventional pathways have been demonstrated to facilitate HIV-1 entry into renal cells in in vitro studies. These include presence of DEC-205 receptors in renal tubular cells and lipid rafts in podocytes. However, HIV-1 entry through these pathways only allows non-productive infection. It appears that the presence of specific genetic and host factors in in vivo conditions may be facilitating the development of the productive HIV-1 infection in kidney cells.
Collapse
Affiliation(s)
- Joanna Mikulak
- Feinstein Institute for Medical Research and Long Island Jewish Medical Center, New Hyde Park, NY, USA
| | | |
Collapse
|
6
|
Ray PE. Taking a hard look at the pathogenesis of childhood HIV-associated nephropathy. Pediatr Nephrol 2009; 24:2109-19. [PMID: 19288142 PMCID: PMC2778297 DOI: 10.1007/s00467-009-1155-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 11/28/2022]
Abstract
Childhood human immunodeficiency virus-associated nephropathy (HIVAN) is defined by the presence of proteinuria associated with mesangial hyperplasia and/or global-focal segmental glomerulosclerosis, in combination with the microcystic transformation of renal tubules. This review discusses the pathogenesis of childhood HIVAN and explores how the current pathological paradigm for HIVAN in adults can be applied to children. The Human Immunodeficiency Virus-1 (HIV-1) induces renal epithelial injury in African American children with a genetic susceptibility to develop HIVAN. The mechanism is not well understood, since renal epithelial cells harvested from children with HIVAN do not appear to be productively infected. Children with HIVAN show a renal up-regulation of heparan sulphate proteoglycans and a recruitment of circulating heparin-binding growth factors, chemokines, and mononuclear cells. Macrophages appear to establish a renal HIV-reservoir and transfer viral particles to renal epithelial cells. All of these changes seem to trigger an aberrant and persistent renal epithelial proliferative response. The paradigm that viral products produced by infected renal epithelial cells per se induce the proliferation of these cells is not supported by data available in children with HIVAN. More research is needed to elucidate how HIV-1 induces renal epithelial injury and proliferation in HIV-infected children.
Collapse
Affiliation(s)
- Patricio E Ray
- Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, USA.
| |
Collapse
|
7
|
Ray PE. Shiga-like toxins and HIV-1 'go through' glycosphingolipids and lipid rafts in renal cells. Kidney Int 2009; 75:1135-1137. [PMID: 19444268 DOI: 10.1038/ki.2009.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The binding of Shiga-like toxins (Stx) to globotriaosyl ceramide (Gb(3)) in renal cells plays a central role in Stx-induced hemolytic uremic syndrome (Stx-HUS). Khan et al. show that the presence of Gb(3) within lipid raft microdomains in glomerular but not tubular cells may be the basis for the glomerular- and age-restricted pathology of Stx-HUS. They also propose that the binding of the HIV-1 glycoprotein gp120 to Gb(3) in renal tubules may play a role in HIV nephropathy.
Collapse
Affiliation(s)
- Patricio E Ray
- Division of Nephrology, Children's Research Institute, Children's National Medical Center, and Department of Pediatrics, The George Washington University, Washington, DC, USA.
| |
Collapse
|
8
|
Detergent-resistant globotriaosyl ceramide may define verotoxin/glomeruli-restricted hemolytic uremic syndrome pathology. Kidney Int 2009; 75:1209-1216. [PMID: 19212418 DOI: 10.1038/ki.2009.7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Verotoxin binding to its receptor, globotriaosyl ceramide(Gb(3)) mediates the glomerular pathology of hemolytic uremic syndrome, but Gb(3) is expressed in both tubular and glomerular cells. Gb(3) within detergent-resistant membranes, an index of glycolipid-cholesterol enriched lipid rafts, is required for in vitro cytotoxicity. We found that verotoxin 1 and 2 binding to human adult renal glomeruli is detergent resistant, whereas the strong verotoxin binding to renal tubules is detergent sensitive. Verotoxin binding to pediatric glomeruli was detergent resistant but binding to adult glomeruli was enhanced, remarkably for some samples, by detergent extraction. Detergent-sensitive glomerular components may provide age-related protection against verotoxin glomerular binding. Mouse glomeruli remained verotoxin unreactive after detergent extraction, whereas tubular binding was lost. Cholesterol extraction induced strong verotoxin binding in poorly reactive adult glomeruli, suggesting cholesterol can mask Gb(3) in glomerular lipid rafts. Binding of the human immunodeficiency virus (HIV) adhesin, gp120 (another Gb(3) ligand) was detergent sensitive, tubule-restricted, and inhibited by verotoxin B subunit pretreatment, and may relate to HIV nephropathy. Our study shows that differential membrane Gb(3) organization in glomeruli and tubules provides a basis for the age- and glomerular-restricted pathology of hemolytic uremic syndrome.
Collapse
|
9
|
Stöllberger C, Armbruster C, Gmeinhart B, Finsterer J. Thrombosis of a drug-eluting stent after almost 2 years in an HIV-infected patient. AIDS 2007; 21:1064-6. [PMID: 17457111 DOI: 10.1097/qad.0b013e3280f6ceb9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Ray PE, Tassi E, Liu XH, Wellstein A. Role of fibroblast growth factor-binding protein in the pathogenesis of HIV-associated hemolytic uremic syndrome. Am J Physiol Regul Integr Comp Physiol 2006; 290:R105-13. [PMID: 16352855 DOI: 10.1152/ajpregu.00492.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A characteristic finding of childhood HIV-associated hemolytic uremic syndrome (HIV-HUS) is the presence of endothelial injury and microcystic tubular dilation, leading to a rapid progression of the renal disease. We have previously shown that a secreted fibroblast growth factor-binding protein (FGF-BP) is upregulated in kidneys from children affected with HIV-HUS and HIV nephropathy. Here, we sought to determine the potential role of FGF-BP in the pathogenesis of HIV-HUS. By immunohistochemical and in situ hybridization studies, we observed FGF-BP protein and mRNA upregulation in regenerating renal tubular epithelial cells from kidneys of HIV-Tg26mice with late-stage renal disease, that is, associated with the development of microcystic tubular dilatation and accumulation of FGF-2. Moreover, FGF-BP increased the FGF-2-dependent growth and survival of cultured primary human renal glomerular endothelial cells and enhanced FGF-2-induced MAPK/ERK2 activation, as well as the proliferation of immortalized GM7373 endothelial cells. We propose that HIV-Tg26mice are a clinically relevant model system to study the role of FGF-BP in the pathogenesis of HIV-associated renal diseases. Furthermore, the upregulation of FGF-BP by regenerating renal tubular epithelial cells may provide a mechanism by which the regenerative and angiogenic activity of FGF-2 in renal capillaries can be modulated in children with HIV-HUS and other renal disease.
Collapse
Affiliation(s)
- Patricio E Ray
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd., Washington DC 20057, USA
| | | | | | | |
Collapse
|