1
|
Gazeu A, Collardeau-Frachon S. Practical Approach to Congenital Anomalies of the Kidneys: Focus on Anomalies With Insufficient or Abnormal Nephron Development: Renal Dysplasia, Renal Hypoplasia, and Renal Tubular Dysgenesis. Pediatr Dev Pathol 2024; 27:459-493. [PMID: 39270126 DOI: 10.1177/10935266241239241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) accounts for up to 30% of antenatal congenital anomalies and is the main cause of kidney failure in children worldwide. This review focuses on practical approaches to CAKUT, particularly those with insufficient or abnormal nephron development, such as renal dysplasia, renal hypoplasia, and renal tubular dysgenesis. The review provides insights into the histological features, pathogenesis, mechanisms, etiologies, antenatal and postnatal presentation, management, and prognosis of these anomalies. Differential diagnoses are discussed as several syndromes may include CAKUT as a phenotypic component and renal dysplasia may occur in some ciliopathies, tumor predisposition syndromes, and inborn errors of metabolism. Diagnosis and genetic counseling for CAKUT are challenging, due to the extensive variability in presentation, genetic and phenotypic heterogeneity, and difficulties to assess postnatal lung and renal function on prenatal imaging. The review highlights the importance of perinatal autopsy and pathological findings in surgical specimens to establish the diagnosis and prognosis of CAKUT. The indications and the type of genetic testing are discussed. The aim is to provide essential insights into the practical approaches, diagnostic processes, and genetic considerations offering valuable guidance for pediatric and perinatal pathologists.
Collapse
Affiliation(s)
- Alexia Gazeu
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Sophie Collardeau-Frachon
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Société française de Fœtopathologie, Soffoet, Paris, France
| |
Collapse
|
2
|
Anand A, Shenoy V, Sutherland RW, Platt C, Hildebrandt CC. Novel CHRNA3 variants identified in a patient with bladder dysfunction, dysautonomia, and gastrointestinal dysmotility. Am J Med Genet A 2024; 194:e63526. [PMID: 38192228 DOI: 10.1002/ajmg.a.63526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are estimated to be responsible for 20%-50% of congenital anomalies and are also a leading etiology of early-onset renal disease. Primary CAKUT are caused by genetic factors that impair proper in-utero genitourinary tract development and secondary CAKUT result from the influence of environmental factors. The CHRNA3 gene, which encodes the Alpha-3 subunit of the nicotinic acetylcholine receptor, is hypothesized to be associated with Megacystis-microcolon-intestinal hyperperistalsis syndrome. More recently, pathogenic variants in CHRNA3 have been identified in individuals with CAKUT as well as individuals with panautonomic failure. Here we present a patient with neurogenic bladder, vesicoureteral reflux, mydriasis, and gastrointestinal dysmotility found to have novel compound heterozygous variants in CHRNA3. These findings support the consideration of CHRNA3 disruption in the differential for CAKUT with dysautonomia and gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Asha Anand
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vivek Shenoy
- UNC School of Medicine, Chapel Hill, North Carolina, USA
- UNC Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Richard W Sutherland
- UNC School of Medicine, Chapel Hill, North Carolina, USA
- UNC Department of Urology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Clara C Hildebrandt
- UNC School of Medicine, Chapel Hill, North Carolina, USA
- UNC Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int 2022; 101:473-484. [PMID: 34780871 PMCID: PMC8934530 DOI: 10.1016/j.kint.2021.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address)
| | - Dina F. Ahram
- Division of Nephrology, Columbia University, New York, USA
| | - Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Rik Westland
- Division of Nephrology, Columbia University, New York, USA.,Department of Pediatric Nephrology, Amsterdam UMC- Emma Children’s Hospital, Amsterdam, NL
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA (current address); Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address).,Department of Pediatrics and Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,To whom correspondence should be addressed: ADDRESS CORRESPONDENCE TO: Simone Sanna-Cherchi, MD, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Phone: 212-851-4925; Fax: 212-851-5461; . Erica E. Davis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7662; Fax: 312-503-7343; , Nicholas Katsanis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7339; Fax: 312-503-7343;
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
4
|
Tseng MH, Huang SM, Konrad M, Huang JL, Shaw SW, Tian YC, Chueh HY, Fan WL, Wu TW, Ding JJ, Chiang MC, Lin SH. Effect of Hydrocortisone on Angiotensinogen ( AGT) Mutation-Causing Autosomal Recessive Renal Tubular Dysgenesis. Cells 2021; 10:cells10040782. [PMID: 33916187 PMCID: PMC8065467 DOI: 10.3390/cells10040782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
We has identified a founder homozygous E3_E4 del: 2870 bp deletion + 9 bp insertion in AGT gene encoding angiotensinogen responsible for autosomal recessive renal tubular dysgenesis (ARRTD) with nearly-fatal outcome. High-dose hydrocortisone therapy successfully rescued one patient with an increased serum Angiotensinogen (AGT), Ang I, and Ang II levels. The pathogenesis of ARRTD caused by this AGT mutation and the potential therapeutic effect of hydrocortisone were examined by in vitro functional studies. The expression of this truncated AGT protein was relatively low with a dose-dependent manner. This truncated mutation diminished the interaction between mutant AGT and renin. The truncated AGT also altered the glucocorticoid receptor (GR)-dependent transactivation, indicating that AGT may affect the development of proximal convoluted tubule by alteration of glucocorticoid-dependent transactivation. In hepatocytes, hydrocortisone increased the AGT level by accentuating the stability of mutant AGT and increasing its binding with renin. Therefore, hydrocortisone may exert the therapeutic effect through the enhanced stability and interaction with renin of truncated AGT in patients carrying this AGT mutation.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan;
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital Münster, 481 Münster, Germany;
| | - Jing-Long Huang
- Division of Pediatric Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Steven W. Shaw
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital and Chang Gung University, Taipei 114, Taiwan;
| | - Ya-Chung Tian
- Division of Nephrology, Department of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Ho-Yen Chueh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 900, USA;
| | - Jhao-Jhuang Ding
- Department of Pediatrics, Tri-Service General Hospital, Taipei 114, Taiwan;
| | - Ming-Chou Chiang
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87927213; Fax: +886-2-87927134
| |
Collapse
|
5
|
Tseng MH, Huang SM, Huang JL, Fan WL, Konrad M, Shaw SW, Lien R, Chien HP, Ding JJ, Wu TW, Tsai JD, Tian YC, Lee HJ, Cheng PJ, Hsu JF, Lin SH. Autosomal Recessive Renal Tubular Dysgenesis Caused by a Founder Mutation of Angiotensinogen. Kidney Int Rep 2020; 5:2042-2051. [PMID: 33163725 PMCID: PMC7609895 DOI: 10.1016/j.ekir.2020.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Autosomal recessive renal tubular dysgenesis (ARRTD) caused by inactivation mutations in AGT, REN, ACE, and AGTR is a very rare but fatal disorder with an unknown prevalence. Methods We report 6 Taiwanese individuals with ARRTD from 6 unrelated families diagnosed by renal histology. Clinical features, outcome, and prevalence of carrier heterozygosity were examined. Results All patients exhibited antenatal oligohydramnios, postnatal anuria, pulmonary hypoplasia, and profound hypotension refractory to interventions. Angiotensinogen (AGT) protein levels were diminished in the liver, along with reduced serum AGT, angiotensin I (Ang I) and angiotensin II (Ang II) levels. Neonatal demise occurred in all but 1 case. All individuals carried the same homozygous E3_E4 del:2870bp deletion+9bp insertion in AGT, which led to a truncated protein (1-292 amino acid). The allelic frequency of this heterozygous AGT mutation was approximately 1.2% (6/500), suggesting that ARRTD may not be exceedingly rare in Taiwan. This mutation results in skipping of exons encoding the serpin domain of AGT, which is important for renin interaction and the generation of truncated protein. In silico modeling revealed a diminished interaction between mutant AGT and renin. One patient survived after responding to high-dose hydrocortisone therapy, with resolution of profound hypotension, accompanied by an increase in serum AGT, Ang I, and Ang II levels. Conclusion This AGT mutation may lead to the diminished interaction with renin and decreased Ang I and Ang II generation. Hydrocortisone may potentially rescue cases of ARRTD caused by this truncated AGT.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Long Huang
- Division of Pediatric Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital Münster, Münster, Germany
| | - Steven W. Shaw
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Reyin Lien
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ping Chien
- Department of Pathology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Jhao-Jhuang Ding
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeng-Daw Tsai
- Division of Nephrology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ya-Chung Tian
- Division of Nephrology, Department of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Jen-Fu Hsu
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, National Defense Medical Center, Taiwan
- Correspondence: Shih-Hua Lin, Division of Nephrology, Department of Medicine, Tri-Service General Hospital, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
6
|
Min J, Cho MH, Bae SP, Shin SH, Ha IS, Cheong HI, Kang HG. A Premature Baby with Severe Oligohydramnios and Hypotension: a Case Report of Renal Tubular Dysgenesis. J Korean Med Sci 2020; 35:e283. [PMID: 32808512 PMCID: PMC7431287 DOI: 10.3346/jkms.2020.35.e283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/14/2020] [Indexed: 11/20/2022] Open
Abstract
Renal tubular dysgenesis (RTD) is a rare fatal disorder in which there is poor development of proximal tubules, leading to oligohydramnios and the Potter sequences. RTD occurs secondary to renin-angiotensin system (RAS) blockade during the early stages of fetal development or due to autosomal recessive mutation of genes in the RAS pathway. A boy born at 33+1 weeks due to cord prolapse was found to be anuric and hypotensive. Pregnancy was complicated by severe oligohydramnios from gestational age 28+4 weeks. Abdominal sonography revealed diffuse globular enlargement of both kidneys with increased cortical parenchymal echogenicity. Infantogram showed a narrow thoracic cage and skull X-ray showed large fontanelles and wide sutures suggestive of ossification delay. Basal plasma renin activity was markedly elevated and angiotensin-converting enzyme was undetectable. Despite adequate use of medications, peritoneal dialysis, and respiratory support, he did not recover and expired on the 23rd day of life. At first, autosomal recessive polycystic kidney disease was suspected, but severe oligohydramnios along with refractory hypotension, anuria, skull ossification delay and high renin levels made RTD suspicious. ACE gene analysis revealed compound heterozygous pathogenic variations of c.1454.dupC in exon 9 and c.2141dupA in exon 14, confirming RTD. Based on our findings, we propose that, although rare, RTD should be suspected in patients with severe oligohydramnios and refractory hypotension.
Collapse
Affiliation(s)
- Jeesu Min
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Myung Hyun Cho
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Seong Phil Bae
- Department of Pediatrics, Soonchunhyang University Hospital, Seoul, Korea
| | - Seung Han Shin
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Il Soo Ha
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, Korea.
| |
Collapse
|
7
|
Role of the renin-angiotensin system in kidney development and programming of adult blood pressure. Clin Sci (Lond) 2020; 134:641-656. [PMID: 32219345 DOI: 10.1042/cs20190765] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Adverse events during fetal life such as insufficient protein intake or elevated transfer of glucocorticoid to the fetus may impact cardiovascular and metabolic health later in adult life and are associated with increased incidence of type 2 diabetes, ischemic heart disease and hypertension. Several adverse factors converge and suppress the fetal renin-angiotensin-aldosterone system (RAAS). The aim of this review is to summarize data on the significance of RAAS for kidney development and adult hypertension. Genetic inactivation of RAAS in rodents at any step from angiotensinogen to angiotensin II (ANGII) type 1 receptor (AT1) receptors or pharmacologic inhibition leads to complex developmental injury to the kidneys that has also been observed in human case reports. Deletion of the 'protective' arm of RAAS, angiotensin converting enzyme (ACE) 2 (ACE-2) and G-protein coupled receptor for Angiotensin 1-7 (Mas) receptor does not reproduce the AT1 phenotype. The changes comprise fewer glomeruli, thinner cortex, dilated tubules, thicker arterioles and arteries, lack of vascular bundles, papillary atrophy, shorter capillary length and volume in cortex and medulla. Altered activity of systemic and local regulators of fetal-perinatal RAAS such as vitamin D and cyclooxygenase (COX)/prostaglandins are associated with similar injuries. ANGII-AT1 interaction drives podocyte and epithelial cell formation of vascular growth factors, notably vascular endothelial growth factor (VEGF) and angiopoietins (Angpts), which support late stages of glomerular and cortical capillary growth and medullary vascular bundle formation and patterning. RAAS-induced injury is associated with lower glomerular filtration rate (GFR), lower renal plasma flow, kidney fibrosis, up-regulation of sodium transporters, impaired sodium excretion and salt-sensitive hypertension. The renal component and salt sensitivity of programmed hypertension may impact dietary counseling and choice of pharmacological intervention to treat hypertension.
Collapse
|
8
|
Kondo S, Matsuura S, Ariunbold J, Kinoshita Y, Urushihara M, Suga K, Ozaki N, Nagai T, Fujioka K, Kagami S. Expression of NADPH oxidase and production of reactive oxygen species contribute to ureteric bud branching and nephrogenesis. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:93-98. [PMID: 31064963 DOI: 10.2152/jmi.66.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Ureteric bud branching and nephrogenesis are performed through large-scale proliferation and apoptosis events during renal development. Reactive oxygen species (ROS), produced by NADPH oxidase, may contribute to cell behaviors, including proliferation and apoptosis. We investigated the role of NADPH oxidase expression and ROS production in developing kidneys. Immunohistochemistry revealed that NADPH oxidase componentswere expressed on epithelial cells in ureteric bud branches, as well as on immature glomerular cells and epithelial cells in nephrogenic zones. ROS production, detected by dihydroethidium assay, was strongly observed in ureteric bud branches and nephrogenic zones, corresponding with NADPH oxidase localization. Organ culture of E14 kidneys revealed that the inhibition of NADPH oxidase significantly reduced the number of ureteric bud branches and tips, consistent with reduced ROS production. This was associated with reduced expression of phosphorylated ERK1/2 and increased expression of cleaved caspase-3. Organ culture of E18 kidneys showed that the inhibition of NADPH oxidase reduced nephrogenic zone size, accompanied by reduced ROS production, fewer proliferating cell nuclear antigen-positive cells, lower p-ERK1/2 expression, and increased expression of cleaved caspase-3. These results demonstrate that ROS produced by NADPH oxidase might play an important role in ureteric bud branching and nephrogenesis by regulating proliferation and apoptosis. J.Med. Invest. 66 :93-98, February, 2019.
Collapse
Affiliation(s)
- Shuji Kondo
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Sato Matsuura
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jamba Ariunbold
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yukiko Kinoshita
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Maki Urushihara
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenichi Suga
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Natsuko Ozaki
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takashi Nagai
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Fujioka
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shoji Kagami
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
9
|
Li B, Zhu Y, Chen H, Gao H, He H, Zuo N, Pei L, Xie W, Chen L, Ao Y, Wang H. Decreased H3K9ac level of AT2R mediates the developmental origin of glomerulosclerosis induced by prenatal dexamethasone exposure in male offspring rats. Toxicology 2018; 411:32-42. [PMID: 30359671 DOI: 10.1016/j.tox.2018.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/04/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022]
Abstract
This study aimed to demonstrate that prenatal dexamethasone exposure (PDE) can induce kidney dysplasia in utero and adult glomerulosclerosis in male offspring, and to explore the underlying intrauterine programming mechanisms. Pregnant rats were subcutaneously administered dexamethasone 0.2 mg/kg.d from gestational day (GD) 9 to GD20. The male fetus on GD20 and the adult offspring at age of postnatal week 28 were analyzed. The adult offspring kidneys in the PDE group displayed glomerulosclerosis, elevated levels of serum creatinine and urine protein, ultrastructural damage of podocytes, the reduced expression levels of podocyte marker genes, nephrin and podocin. The histone 3 lysine 9 acetylation (H3K9ac) level in the promoter of renal angiotensin II receptor type 2 (AT2R) and its expression were reduced, whereas the angiotensin II receptor type 1a (AT1aR)/AT2R expression ratio was increased. The fetal kidneys in the PDE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio, reduced the expression level of glial-cell-line derived neurotrophic factor/c-Ret tyrosine kinase receptor (GDNF/c-Ret) signal pathway and podocyte marker genes. Moreover, the H3K9ac and H3K27ac levels of AT2R as well as the gene and protein expression levels of AT2R in fetal kidneys were inhibited by PDE. In vitro, primary metanephric mesenchyme stem cells (MMSCs) were treated with dexamethasone. Overexpression of AT2R reversed the inhibited expression of GDNF/c-Ret and podocin/nephrin induced by dexamethasone, and glucocorticoids receptor antagonist abolished the decreased H3K9ac level and gene expression of AT2R. In conclusion, PDE induced the offspring's kidney dysplasia as well as adult glomerulosclerosis, which was mediated by a sustained decrease in renal AT2R expression via decreasing the H3 K9ac level.
Collapse
Affiliation(s)
- Bin Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanan Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Haiyun Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Hui Gao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hangyuan He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Na Zuo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Linguo Pei
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Liaobin Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
10
|
Zhu Y, Zuo N, Li B, Xiong Y, Chen H, He H, Sun Z, Hu S, Cheng H, Ao Y, Wang H. The expressional disorder of the renal RAS mediates nephrotic syndrome of male rat offspring induced by prenatal ethanol exposure. Toxicology 2018; 400-401:9-19. [PMID: 29548890 DOI: 10.1016/j.tox.2018.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
This study aimed to prove that prenatal ethanol exposure (PEE) can induce nephrotic syndrome in male rat offspring and to explore the underlying intrauterine programming mechanisms. Pregnant Wistar rats were intragastrically administered ethanol (4 g/kg d) from gestational day (GD) 9 to GD 20, and the male fetuses were delivered by cesarean section at GD20 and the male adult offspring were euthanized at postnatal week (PW) 24. In vitro, the primary metanephric mesenchyme cells were treated with ethanol at concentrations of 15-60 mM. The results indicated that the kidneys of adult offspring in the PEE group exhibited glomerulosclerosis as well as interstitial fibrosis. The levels of serum creatinine and urine protein were elevated; the serum total cholesterol level was increased and the serum albumin concentration was reduced. In the fetal kidney, developmental retardation was presented in the PEE group via pathological examinations, accompanied by the expressional inhibition of the glial-cell-line-derived neurotrophic factor/c-ret tyrosine kinase receptor (GDNF/c-ret) signaling pathway. Although serum angiotensin II (Ang II) level and the gene expression of renal angiotensin-converting enzyme (ACE) were increased in the PEE group, the expression of renal angiotensin II type 2 receptor (AT2R) was significantly inhibited, accompanied by a reduction in the H3K27ac level on the AT2R gene promoter. In the non-classical renin-angiotensin system (RAS), the expression of renal angiotensin converting enzyme 2 (ACE2) and Mas receptor (MasR) were inhibited in the PEE group. The above changes of the classical and non-classical RAS all sustained from utero to adulthood. In vitro, ethanol elevated the gene expression of ACE and angiotensin II type 1a receptor (AT1aR) whereas it reduced the expression of AT2R, ACE2, and MasR, accompanied by a reduction in the H3K27ac level on AT2R gene promoter. Taken together, these results suggested that PEE can induce fetal kidney developmental retardation and adult nephrotic syndrome, and direct regulation of ethanol to the renal RAS was involved in the mechanism of nephrotic syndrome induced by PEE.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China
| | - Na Zuo
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China
| | - Ying Xiong
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China
| | - Haiyun Chen
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China
| | - Hangyuan He
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China
| | - Zhaoxia Sun
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China
| | - Shuangshuang Hu
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China
| | - Hui Cheng
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ying Ao
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| |
Collapse
|
11
|
Čertíková Chábová V, Červenka L. The dilemma of dual renin-angiotensin system blockade in chronic kidney disease: why beneficial in animal experiments but not in the clinic? Physiol Res 2017; 66:181-192. [PMID: 28471687 DOI: 10.33549/physiolres.933607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Drugs interfering with the renin-angiotensin-aldosterone system (RAAS) improved the prognosis in patients with hypertension, heart failure, diabetes and chronic kidney disease. However, combining different drugs brought no further benefit while increasing the risk of hyperkalemia, hypotension and acute renal failure. This was so with combining angiotensin converting enzyme inhibitors (ACEi) and angiotensin II receptors type 1 antagonists (ARB). Dissimilarly, in animal disease models this dual therapy proved clearly superior to single drug treatment and became the optimal standard regime for comparison with other treatments. This review analyzes the causes of the discrepancy of effects of the dual therapy between animal experiments versus clinical studies, and is focused on the outcomes in chronic kidney disease. Discussed is the role of species differences in RAAS, of the variability of the disease features in humans versus relative stability in animals, of the genetic uniformity in the animals but not in humans, and of the biased publication habits of experimental versus clinical studies. We attempt to understand the causes and reconcile the discordant findings and suggest to what extent dual RAAS inhibition should be continued in animal experiments and why its application in the clinics should be limited to strictly selected groups of patients.
Collapse
Affiliation(s)
- V Čertíková Chábová
- Department of Nephrology, First Faculty of Medicine, Charles University, Prague, Czech Republic, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | |
Collapse
|
12
|
Faensen AL, von Trebra MW, Freese F, Kreutz R, Bamberg C, Hinkson L, Rothermund L. Genetic low nephron number hypertension is associated with altered expression of key components of the renin-angiotensin system during nephrogenesis. J Perinat Med 2016; 44:705-9. [PMID: 26677883 DOI: 10.1515/jpm-2015-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/02/2015] [Indexed: 02/02/2023]
Abstract
AIM This study investigates key components of the renin-angiotensin system (RAS) which play a central role in nephrogenesis and possibly in fetal programming of arterial hypertension in adult life. METHODS We compared a genetic rat model with inborn nephron deficit, the Munich Wistar Fromter rat (MWF), to normotensive Wistar rats during nephrogenesis at day 19 of fetal development (E19) and at postnatal day 7 (D7). RESULTS At E19 renal mRNA of angiotensin II type 1a (AT1a) (-50%, P<0.05) and type 1b (AT1b) (-55%, P<0.05) receptors were significantly decreased and renal mRNA expression of angiotensin II type 2 (AT2) receptor was fivefold increased in MWF (n=8) as compared to Wistar rats (n=8). At D7 renal mRNA expression of AT1a (-42%, P<0.05) remained lower in MWF (n=8) as compared to Wistar (n=7). Renal mRNA expression of AT2 (-30%, P>0.05) decreased in MWF (n=8) to about the level of the Wistar control (n=6). CONCLUSIONS Altered fetal expression of key molecules of the renin-angiotensin system in MWF indicates a possible role in genetic low nephron number hypertension.
Collapse
|
13
|
Fanni D, Gerosa C, Vinci L, Ambu R, Dessì A, Eyken PV, Fanos V, Faa G. Interstitial stromal progenitors during kidney development: here, there and everywhere. J Matern Fetal Neonatal Med 2016; 29:3815-20. [PMID: 26866875 DOI: 10.3109/14767058.2016.1147553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent years, the renal interstitium has been identified as the site of multiple cell types, giving rise to multiple contiguous cellular networks with multiple fundamental structural and functional roles. Few studies have been carried out on the morphological and functional properties of the stromal/interstitial renal cells during the intrauterine life. This work was aimed at reviewing the peculiar features of renal interstitial stem/progenitor cells involved in kidney development. The origin of the renal interstitial progenitor cells remains unknown. During kidney development, besides the Six2 + cells of the cap mesenchyme, a self-renewing progenitor population, characterized by the expression of Foxd1, represents the first actor of the non-nephrogenic lineage. Foxd1 + interstitial progenitors originate the cortical and the renal medullary interstitial progenitors. Here, the most important stromal/interstitial compartments present in the developing human kidney will be analyzed: capsular stromal cells, cortical interstitial cells, medullary interstitial cells, the interstitium inside the renal stem cell niche, Hilar interstitial cells and Ureteric interstitial cells. Data reported here indicate that the different interstitial compartments of the developing kidney are formed by different cell types that characterize the different renal areas. Further studies are needed to better characterize the different pools of renal interstitial progenitors and their role in human nephrogenesis.
Collapse
Affiliation(s)
- Daniela Fanni
- a Division of Pathology , Department of Surgical Sciences, University of Cagliari , Cagliari , Italy
| | - Clara Gerosa
- a Division of Pathology , Department of Surgical Sciences, University of Cagliari , Cagliari , Italy
| | - Laura Vinci
- a Division of Pathology , Department of Surgical Sciences, University of Cagliari , Cagliari , Italy
| | - Rossano Ambu
- a Division of Pathology , Department of Surgical Sciences, University of Cagliari , Cagliari , Italy
| | - Angelica Dessì
- b Department of Surgical Sciences , NICU Center and Puericulture Institute and Neonatal Section, University of Cagliari , Cagliari , Italy , and
| | - Peter Van Eyken
- c Department of Pathology , University Hospitals, KU , Leuven , Belgium
| | - Vassilios Fanos
- b Department of Surgical Sciences , NICU Center and Puericulture Institute and Neonatal Section, University of Cagliari , Cagliari , Italy , and
| | - Gavino Faa
- a Division of Pathology , Department of Surgical Sciences, University of Cagliari , Cagliari , Italy
| |
Collapse
|
14
|
Tain YL, Sheen JM, Yu HR, Chen CC, Tiao MM, Hsu CN, Lin YJ, Kuo KC, Huang LT. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring. Front Physiol 2015; 6:377. [PMID: 26696906 PMCID: PMC4675845 DOI: 10.3389/fphys.2015.00377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022] Open
Abstract
Prenatal dexamethasone (DEX) exposure and high-fat (HF) intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg) or vehicle from gestational day 16 to 22. In the melatonin-treatment groups (M), rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Male offspring were assigned to five groups: control, DEX, HF, DEX+HF, and DEX+HF+M. Male offspring in the HF group were fed a HF diet from weaning to 4 months of age. Prenatal DEX and postnatal HF diet synergistically induced programmed hypertension in adult offspring, which melatonin prevented. Maternal melatonin treatment modified over 3000 renal transcripts in the developing offspring kidney. Our NGS data indicate that PPAR signaling and fatty acid metabolism are two significantly regulated pathways. In addition, maternal melatonin therapy elicits longstanding alterations on renal programming, including regulation of the melatonin signaling pathway and upregulation of Agtr1b and Mas1 expression in the renin-angiotensin system (RAS), to protect male offspring against programmed hypertension. Postnatal HF aggravates prenatal DEX induced programmed hypertension in adult offspring, which melatonin prevented. The protective effects of melatonin on programmed hypertension is associated with regulation of the RAS and melatonin receptors. The long-term effects of maternal melatonin therapy on renal transcriptome require further clarification.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan ; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan ; School of Pharmacy, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Kuang-Che Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan ; Department of Traditional Chinese Medicine, Chang Gung University Linkou, Taiwan
| |
Collapse
|
15
|
Epistatic interaction between common AGT G(-6)A (rs5051) and AGTR1 A1166C (rs5186) variants contributes to variation in kidney size at birth. Gene 2015; 572:72-78. [PMID: 26142106 DOI: 10.1016/j.gene.2015.06.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/02/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
Abstract
Low nephron number has been recognised as an important cardiovascular risk factor and recently a strong correlation between renal mass and nephron number has been demonstrated in newborns. The aim of this study was to investigate individual, as well as combined, effects of common variants of genes which encode for major components of the renin-angiotensin system (REN G10601A, AGT G(-6)A, ACE I/D, AGTR1 A1166C) on kidney size in healthy, full-term newborns. A significant additive main effect of the ACE I/D polymorphism, as well as an additive-by-additive interaction between AGT G(-6)A and AGTR1 A1166C variants, were found. The variance attributed to the epistatic effect was 27.9 ml(2)/m(4), which accounted for 73.8% of the interaction variance (37.8 ml(2)/m(4)), 66.4% of the genetic variance (42.0 ml(2)/m(4)) and 4.4% to the total phenotypic variance (628 ml(2)/m(4)). No other statistically significant main or epistatic effects were detected. Our results highlight the importance of considering gene-gene interactions as part of the genetic architecture of congenital nephron number, even when the loci do not show significant single locus effects. Unravelling the genetic determinants of low nephron number, along with early molecular screening, may well help to identify children at risk for cardiovascular disease.
Collapse
|
16
|
Low functional programming of renal AT 2 R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure. Toxicol Appl Pharmacol 2015; 287:128-138. [DOI: 10.1016/j.taap.2015.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
17
|
Maternal fructose-intake-induced renal programming in adult male offspring. J Nutr Biochem 2015; 26:642-50. [DOI: 10.1016/j.jnutbio.2014.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
|
18
|
Zhang Y, Ma L, Wu J, Chen T. Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice. J Renin Angiotensin Aldosterone Syst 2015; 16:267-74. [PMID: 25650385 DOI: 10.1177/1470320314568439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Hydronephrosis is characterized by substantial loss of tubules and affects renin secretion in the kidney. However, whether alterations of angiotensin-converting enzyme (ACE), ACE2 and Mas receptor in the heart are observed in hydronephrosis is unknown. Thus, we assessed these components in hydronephrotic mice treated with AT1 receptor blockade and ACE inhibitor. MATERIALS AND METHODS Hydronephrosis was induced by left ureteral ligation in Balb/C mice except sham-operated animals. The levels of cardiac ACE, ACE2 and Mas receptor were measured after treatment of losartan or enalapril. RESULTS Hydronephrosis led to an increase of ACE level and a decrease of ACE2 and Mas receptor in the heart. Losartan decreased cardiac ACE level, but ACE2 and Mas receptor levels significantly increased in hydronephrotic mice (p < 0.01). Enalapril increased ACE2 levels (p < 0.01), but did not affect Mas receptor in the heart. Plasma renin activity (PRA) and Ang II decreased in hydronephrotic mice, but significantly increased after treatment with losartan or enalapril. CONCLUSIONS Hydronephrosis increased cardiac ACE and suppressed ACE2 and Mas receptor levels. AT1 blockade caused sustained activation of cardiac ACE2 and Mas receptor, but ACE inhibitor had the limitation of such activation of Mas receptor in hydronephrotic animals.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Physiology, Institute of Neurobiology, Taishan Medical University, China
| | - Lulu Ma
- Department of Physiology, Institute of Neurobiology, Taishan Medical University, China
| | - Junyan Wu
- Department of Physiology, Institute of Neurobiology, Taishan Medical University, China
| | - Tingting Chen
- Department of Physiology, Institute of Neurobiology, Taishan Medical University, China
| |
Collapse
|
19
|
Abstract
A number of genes involved in kidney development are reactivated in the adult after acute kidney injury (AKI). This has led to the belief that tissue repair mechanisms recapitulate pathways involved in embryonic development after AKI. We will discuss evidence to support this hypothesis by comparing the mechanisms of development with common pathways known to regulate post-AKI repair, or that we identified as cell-specific candidates based on public datasets from recent AKI translational profiling studies. We will argue that while many of these developmental pathways are reactivated after AKI, this is not associated with general cellular reprogramming to an embryonic state. We will show that reactivation of these developmental genes is often associated with expression in cells that are not normally involved in mediating parallel responses in the embryo, and that depending on the cellular context, these responses can have beneficial or detrimental effects on injury and repair after AKI.
Collapse
|
20
|
Sun Z, Hu S, Zuo N, Yang S, He Z, Ao Y, Wang H. Prenatal nicotine exposure induced GDNF/c-Ret pathway repression-related fetal renal dysplasia and adult glomerulosclerosis in male offspring. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00040h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prenatal nicotine exposure could induce fetal renal dysplasia associated with the suppression of the GDNF/c-Ret pathway and adult glomerulosclerosis in male offspring, which might be mediated by alterations in angiotensin II receptors.
Collapse
Affiliation(s)
- Zhaoxia Sun
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Shuangshuang Hu
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Na Zuo
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Shuailong Yang
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Zheng He
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Ying Ao
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder
| | - Hui Wang
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder
| |
Collapse
|
21
|
dos Santos Junior ACS, de Miranda DM, Simões e Silva AC. Congenital anomalies of the kidney and urinary tract: An embryogenetic review. ACTA ACUST UNITED AC 2014; 102:374-81. [DOI: 10.1002/bdrc.21084] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Affiliation(s)
| | - Debora Marques de Miranda
- National Institute of Science and Technology-Molecular Medicine (INCT-MM), Universidade Federal de Minas Gerais (UFMG); Brazil
- Faculty of Medicine; Department of Pediatrics; Unit of Pediatric Nephrology; Pediatric Branch of the Interdisciplinary Laboratory of Medical Investigation, UFMG; Brazil
| | - Ana Cristina Simões e Silva
- National Institute of Science and Technology-Molecular Medicine (INCT-MM), Universidade Federal de Minas Gerais (UFMG); Brazil
- Faculty of Medicine; Department of Pediatrics; Unit of Pediatric Nephrology; Pediatric Branch of the Interdisciplinary Laboratory of Medical Investigation, UFMG; Brazil
| |
Collapse
|
22
|
Miranda DM, dos Santos AC, Sarubi HC, Bastos-Rodrigues L, Rosa DV, Freitas IS, De Marco LA, Oliveira EA, Simões e Silva AC. Association of angiotensin type 2 receptor gene polymorphisms with ureteropelvic junction obstruction in Brazilian patients. Nephrology (Carlton) 2014; 19:714-20. [DOI: 10.1111/nep.12308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Debora M Miranda
- INCT/MM - National Institute of Science and Technology in Molecular Medicine; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
- Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Unity of Pediatric Nephrology; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| | - Augusto Cesar dos Santos
- INCT/MM - National Institute of Science and Technology in Molecular Medicine; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
- Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Unity of Pediatric Nephrology; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| | - Helena C Sarubi
- INCT/MM - National Institute of Science and Technology in Molecular Medicine; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| | - Luciana Bastos-Rodrigues
- INCT/MM - National Institute of Science and Technology in Molecular Medicine; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| | - Daniela Valadão Rosa
- INCT/MM - National Institute of Science and Technology in Molecular Medicine; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| | - Izabella S Freitas
- INCT/MM - National Institute of Science and Technology in Molecular Medicine; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| | - Luiz Armando De Marco
- INCT/MM - National Institute of Science and Technology in Molecular Medicine; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| | - Eduardo A Oliveira
- INCT/MM - National Institute of Science and Technology in Molecular Medicine; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
- Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Unity of Pediatric Nephrology; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| | - Ana Cristina Simões e Silva
- INCT/MM - National Institute of Science and Technology in Molecular Medicine; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
- Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Unity of Pediatric Nephrology; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| |
Collapse
|
23
|
Abstract
In utero exposure to certain drugs early in pregnancy may adversely affect nephrogenesis. Exposure to drugs later in pregnancy may affect the renin-angiotensin system, which could have an impact on fetal or neonatal renal function. Reduction in nephron number and renal function could have adverse consequences for the child several years later. Data are limited on the information needed to guide decisions for patients and providers regarding the use of certain drugs in pregnancy. The study of drug nephroteratogenicity has not been systematized, a large, standardized, global approach is needed to evaluate the renal risks of in utero drug exposures.
Collapse
|