1
|
Havrylov S, Chrystal P, van Baarle S, French CR, MacDonald IM, Avasarala J, Rogers RC, Berry FB, Kume T, Waskiewicz AJ, Lehmann OJ. Pleiotropy in FOXC1-attributable phenotypes involves altered ciliation and cilia-dependent signaling. Sci Rep 2024; 14:20278. [PMID: 39217245 PMCID: PMC11365983 DOI: 10.1038/s41598-024-71159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Alterations to cilia are responsible for a wide range of severe disease; however, understanding of the transcriptional control of ciliogenesis remains incomplete. In this study we investigated whether altered cilia-mediated signaling contributes to the pleiotropic phenotypes caused by the Forkhead transcription factor FOXC1. Here, we show that patients with FOXC1-attributable Axenfeld-Rieger Syndrome (ARS) have a prevalence of ciliopathy-associated phenotypes comparable to syndromic ciliopathies. We demonstrate that altering the level of Foxc1 protein, via shRNA mediated inhibition, CRISPR/Cas9 mutagenesis and overexpression, modifies cilia length in vitro. These structural changes were associated with substantially perturbed cilia-dependent signaling [Hedgehog (Hh) and PDGFRα], and altered ciliary compartmentalization of the Hh pathway transcription factor, Gli2. Consistent with these data, in primary cultures of murine embryonic meninges, cilia length was significantly reduced in heterozygous and homozygous Foxc1 mutants compared to controls. Meningeal expression of the core Hh signaling components Gli1, Gli3 and Sufu was dysregulated, with comparable dysregulation of Pdgfrα signaling evident from significantly altered Pdgfrα and phosphorylated Pdgfrα expression. On the basis of these clinical and experimental findings, we propose a model that altered cilia-mediated signaling contributes to some FOXC1-induced phenotypes.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Paul Chrystal
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Suey van Baarle
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Curtis R French
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jagannadha Avasarala
- Department of Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| | | | - Fred B Berry
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, 3002D Li Ka Shing Centre, University of Alberta, Edmonton, AB, Canada
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ordan J Lehmann
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology, 829 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
2
|
Hammi Y, Ferjani M, Meddeb R, Kacem R, Sayari T, Mrad R, Gargah T. Phenotype Spectrum in Tunisian Population with NPHP1 Deletion. Indian J Nephrol 2023; 33:426-431. [PMID: 38174310 PMCID: PMC10752411 DOI: 10.4103/ijn.ijn_248_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2024] Open
Abstract
Introduction Nephronophthisis (NPHP) is a tubulointerstitial kidney disorder with an autosomal recessive inheritance pattern. Its genetic heterogeneity contributes to phenotype variability. The most frequent etiology of juvenile nephronophthisis is a mutation in the nephronophthisis type 1 (NPHP1) gene. This study aimed to evaluate the genotype-phenotype correlation in NPHP1 gene mutation. Methods A multicenter retrospective study was performed over 20 years from 1998 to 2018 to describe the clinical, biological, and radiological features associated with the large deletion NPHP1 gene in 32 patients. Results The incidence of NPHP1 was 1.6/204041. Eighty-one percent of our patients were born out of consanguineous marriages. The mean age at diagnosis was 14 ± 7 years. The patients were divided into three groups: isolated nephronophthisis (72%), syndromic nephronophthisis (19%), and patients without recognizable syndrome (9%). Intrafamilial and geographical variability was observed in syndrome diagnoses and in age at the onset of CKD stage 5. Genotype frequency varied between 50% and 100% in genealogical data. Juvenile (47%), adolescent (37%), and adult (13%) clinical forms have been distinguished by the onset of CKD stage 5. The five-year survival rate of renal transplantation was 80%. Conclusion Given the broad clinical spectrum of NPHP1 associated with the large deletion of the NPHP1 gene, no genotype-phenotype correlation could be established.
Collapse
Affiliation(s)
- Yousra Hammi
- Department of Pediatric, Charles Nicolle Hospital, Tunis, Tunisia
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
| | - Maryem Ferjani
- Department of Pediatric, Charles Nicolle Hospital, Tunis, Tunisia
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
| | - Rym Meddeb
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
- Department of Genetic, Charles Nicolle Hospital, Tunis, Tunisia
| | - Rania Kacem
- Department of Pediatric, CHI Frejus, Saint Raphaël, Tunisia
| | - Taha Sayari
- Department of Pediatric, Charles Nicolle Hospital, Tunis, Tunisia
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
| | - Ridha Mrad
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
- Department of Genetic, Charles Nicolle Hospital, Tunis, Tunisia
| | - Tahar Gargah
- Department of Pediatric, Charles Nicolle Hospital, Tunis, Tunisia
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
| |
Collapse
|
3
|
Garfa Traoré M, Roccio F, Miceli C, Ferri G, Parisot M, Cagnard N, Lhomme M, Dupont N, Benmerah A, Saunier S, Delous M. Fluid shear stress triggers cholesterol biosynthesis and uptake in inner medullary collecting duct cells, independently of nephrocystin-1 and nephrocystin-4. Front Mol Biosci 2023; 10:1254691. [PMID: 37916190 PMCID: PMC10616263 DOI: 10.3389/fmolb.2023.1254691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Renal epithelial cells are subjected to fluid shear stress of urine flow. Several cellular structures act as mechanosensors-the primary cilium, microvilli and cell adhesion complexes-that directly relay signals to the cytoskeleton to regulate various processes including cell differentiation and renal cell functions. Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy leading to end-stage kidney failure before adulthood. NPHP1 and NPHP4 are the major genes which code for proteins that form a complex at the transition zone of the primary cilium, a crucial region required for the maintenance of the ciliary composition integrity. These two proteins also interact with signaling components and proteins associated with the actin cytoskeleton at cell junctions. Due to their specific subcellular localization, we wondered whether NPHP1 and NPHP4 could ensure mechanosensory functions. Using a microfluidic set up, we showed that murine inner medullary collecting ductal cells invalidated for Nphp1 or Nphp4 are more responsive to immediate shear exposure with a fast calcium influx, and upon a prolonged shear condition, an inability to properly regulate cilium length and actin cytoskeleton remodeling. Following a transcriptomic study highlighting shear stress-induced gene expression changes, we showed that prolonged shear triggers both cholesterol biosynthesis pathway and uptake, processes that do not seem to involve neither NPHP1 nor NPHP4. To conclude, our study allowed us to determine a moderate role of NPHP1 and NPHP4 in flow sensation, and to highlight a new signaling pathway induced by shear stress, the cholesterol biosynthesis and uptake pathways, which would allow cells to cope with mechanical stress by strengthening their plasma membrane through the supply of cholesterol.
Collapse
Affiliation(s)
- Meriem Garfa Traoré
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Federica Roccio
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Caterina Miceli
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Giulia Ferri
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Marie Lhomme
- ICAN Omics, IHU ICAN Foundation for Innovation in Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Marion Delous
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Reddy S, Simmers R, Shah A, Couser N. NPHP1-Related ciliopathies: A new case and major review of the ophthalmic manifestations of 147 reported cases. Clin Case Rep 2023; 11:e7818. [PMID: 37663822 PMCID: PMC10468586 DOI: 10.1002/ccr3.7818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Our case report and review contribute to the understanding of ocular manifestations in NPHP1 ciliopathies by reinforcing the relationship between pathogenic genetic variants and a wide array of ophthalmic abnormalities.
Collapse
Affiliation(s)
- Shivania Reddy
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Russell Simmers
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Arth Shah
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Natario Couser
- Department of Human and Molecular GeneticsVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- Department of OphthalmologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- Department of PediatricsVirginia Commonwealth University School of Medicine, Children's Hospital of Richmond at VCURichmondVirginiaUSA
| |
Collapse
|
5
|
Petzold F, Billot K, Chen X, Henry C, Filhol E, Martin Y, Avramescu M, Douillet M, Morinière V, Krug P, Jeanpierre C, Tory K, Boyer O, Burgun A, Servais A, Salomon R, Benmerah A, Heidet L, Garcelon N, Antignac C, Zaidan M, Saunier S. The genetic landscape and clinical spectrum of nephronophthisis and related ciliopathies. Kidney Int 2023:S0085-2538(23)00377-0. [PMID: 37230223 DOI: 10.1016/j.kint.2023.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Nephronophthisis (NPH) is an autosomal-recessive ciliopathy representing one of the most frequent causes of kidney failure in childhood characterized by a broad clinical and genetic heterogeneity. Applied to one of the worldwide largest cohorts of patients with NPH, genetic analysis encompassing targeted and whole exome sequencing identified disease-causing variants in 600 patients from 496 families with a detection rate of 71%. Of 788 pathogenic variants, 40 known ciliopathy genes were identified. However, the majority of patients (53%) bore biallelic pathogenic variants in NPHP1. NPH-causing gene alterations affected all ciliary modules defined by structural and/or functional subdomains. Seventy six percent of these patients had progressed to kidney failure, of which 18% had an infantile form (under five years) and harbored variants affecting the Inversin compartment or intraflagellar transport complex A. Forty eight percent of patients showed a juvenile (5-15 years) and 34% a late-onset disease (over 15 years), the latter mostly carrying variants belonging to the Transition Zone module. Furthermore, while more than 85% of patients with an infantile form presented with extra-kidney manifestations, it only concerned half of juvenile and late onset cases. Eye involvement represented a predominant feature, followed by cerebellar hypoplasia and other brain abnormalities, liver and skeletal defects. The phenotypic variability were in a large part associated with mutation types, genes and corresponding ciliary modules with hypomorphic variants in ciliary genes playing a role in early steps of ciliogenesis associated with juvenile-to-late onset NPH forms. Thus, our data confirm a considerable proportion of late-onset NPH suggesting an underdiagnosis in adult chronic kidney disease.
Collapse
Affiliation(s)
- Friederike Petzold
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France; Division of Nephrology, Department of Endocrinology, Nephrology, and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Katy Billot
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Xiaoyi Chen
- Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Charline Henry
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Emilie Filhol
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Yoann Martin
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Marina Avramescu
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France; Department of Pediatry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maxime Douillet
- Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Vincent Morinière
- APHP, Génétique moléculaire, Hôpital universitaire Necker-Enfants malades, Paris, France
| | - Pauline Krug
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France; Department of Pediatry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cécile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Kalman Tory
- Ist Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary
| | - Olivia Boyer
- Department of Pediatry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Nephrology and Transplantation Department, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Université de Paris, France
| | - Anita Burgun
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France; Hôpital Necker-Enfants Malades, Department of Medical Informatics, AP-HP, Paris, France; PaRis Artificial Intelligence Research InstitutE (PRAIRIE), France
| | - Aude Servais
- Nephrology and Transplantation Department, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Université de Paris, France
| | - Remi Salomon
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France; Department of Pediatry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Laurence Heidet
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France; Department of Pediatry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Nephrology and Transplantation Department, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Université de Paris, France
| | - Nicolas Garcelon
- Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Mohamad Zaidan
- Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital de Bicêtre, Service de Néphrologie et Transplantation, Le Kremlin-Bicêtre, France; Centre de Compétence Maladies Rares « Syndrome Néphrotique Idiopathique », Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France.
| |
Collapse
|
6
|
Sekine A, Hidaka S, Moriyama T, Shikida Y, Shimazu K, Ishikawa E, Uchiyama K, Kataoka H, Kawano H, Kurashige M, Sato M, Suwabe T, Nakatani S, Otsuka T, Kai H, Katayama K, Makabe S, Manabe S, Shimabukuro W, Nakanishi K, Nishio S, Hattanda F, Hanaoka K, Miura K, Hayashi H, Hoshino J, Tsuchiya K, Mochizuki T, Horie S, Narita I, Muto S. Cystic Kidney Diseases That Require a Differential Diagnosis from Autosomal Dominant Polycystic Kidney Disease (ADPKD). J Clin Med 2022; 11:6528. [PMID: 36362756 PMCID: PMC9657046 DOI: 10.3390/jcm11216528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary cystic kidney disease, with patients often having a positive family history that is characterized by a similar phenotype. However, in atypical cases, particularly those in which family history is unclear, a differential diagnosis between ADPKD and other cystic kidney diseases is important. When diagnosing ADPKD, cystic kidney diseases that can easily be excluded using clinical information include: multiple simple renal cysts, acquired cystic kidney disease (ACKD), multilocular renal cyst/multilocular cystic nephroma/polycystic nephroma, multicystic kidney/multicystic dysplastic kidney (MCDK), and unilateral renal cystic disease (URCD). However, there are other cystic kidney diseases that usually require genetic testing, or another means of supplementing clinical information to enable a differential diagnosis of ADPKD. These include autosomal recessive polycystic kidney disease (ARPKD), autosomal dominant tubulointerstitial kidney disease (ADTKD), nephronophthisis (NPH), oral-facial-digital (OFD) syndrome type 1, and neoplastic cystic kidney disease, such as tuberous sclerosis (TSC) and Von Hippel-Lindau (VHL) syndrome. To help physicians evaluate cystic kidney diseases, this article provides a review of cystic kidney diseases for which a differential diagnosis is required for ADPKD.
Collapse
Affiliation(s)
- Akinari Sekine
- Nephrology Center, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Sumi Hidaka
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Tomofumi Moriyama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Yasuto Shikida
- Department of Nephrology, Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
| | - Keiji Shimazu
- Department of Nephrology, Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
| | - Eiji Ishikawa
- Department of Nephrology, Saiseikai Matsusaka General Hospital, Mie 515-8557, Japan
| | - Kiyotaka Uchiyama
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Department of Advanced Informatics for Genetic Disease, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Mahiro Kurashige
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Mai Sato
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Tatsuya Suwabe
- Nephrology Center, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tadashi Otsuka
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hirayasu Kai
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Wataru Shimabukuro
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Fumihiko Hattanda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kazushige Hanaoka
- Department of General Internal Medicine, Daisan Hospital, Jikei University, School of Medicine, Tokyo 105-8471, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University, Aichi 470-1192, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | | | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Department of Advanced Informatics for Genetic Disease, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Department of Urology, Juntendo University Nerima Hospital, Tokyo 177-8521, Japan
| |
Collapse
|
7
|
Walczak-Sztulpa J, Wawrocka A, Sikora W, Pawlak M, Bukowska-Olech E, Kopaczewski B, Urzykowska A, Arts HH, Gotz-Więckowska A, Grenda R, Latos-Bieleńska A, Glazar R. WDR35 variants in a cranioectodermal dysplasia patient with early onset end-stage renal disease and retinal dystrophy. Am J Med Genet A 2022; 188:3071-3077. [PMID: 35875935 DOI: 10.1002/ajmg.a.62903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/31/2023]
Abstract
Cranioectodermal dysplasia (CED) is rare heterogeneous condition. It belongs to a group of disorders defined as ciliopathies and is associated with defective cilia function and structure. To date six genes have been associated with CED. Here we describe a 4-year-old male CED patient whose features include dolichocephaly, multi-suture craniosynostosis, epicanthus, frontal bossing, narrow thorax, limb shortening, and brachydactyly. The patient presented early-onset chronic kidney disease and was transplanted at the age of 2 years and 5 months. At the age of 3.5 years a retinal degeneration was diagnosed. Targeted sequencing by NGS revealed the presence of compound heterozygous variants in the WDR35 gene. The variants are a novel missense change in exon 9 p.(Gly303Arg) and a previously described nonsense variant in exon 18 p.(Leu641*). Our findings suggest that patients with WDR35 defects may be at risk to develop early-onset retinal degeneration. Therefore, CED patients with pathogenic variation in this gene should be assessed at least once by the ophthalmologist before the age of 4 years to detect early signs of retinal degeneration.
Collapse
Affiliation(s)
| | - Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Weronika Sikora
- Students' Scientific Society of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Pawlak
- Department of Ophthalmology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Bartłomiej Kopaczewski
- Department of Neurosurgery, Karol Jonscher Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Urzykowska
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Heleen H Arts
- Department of Pathology and Laboratory Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,IWK Health Centre, Clinical Genomics Laboratory, Halifax, Nova Scotia, Canada
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Renata Glazar
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
8
|
Claus LR, Snoek R, Knoers NVAM, van Eerde AM. Review of genetic testing in kidney disease patients: Diagnostic yield of single nucleotide variants and copy number variations evaluated across and within kidney phenotype groups. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:358-376. [PMID: 36161467 PMCID: PMC9828643 DOI: 10.1002/ajmg.c.31995] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 01/29/2023]
Abstract
Genetic kidney disease comprises a diverse group of disorders. These can roughly be divided in the phenotype groups congenital anomalies of the kidney and urinary tract, ciliopathies, glomerulopathies, stone disorders, tubulointerstitial kidney disease, and tubulopathies. Many etiologies can lead to chronic kidney disease that can progress to end-stage kidney disease. Despite each individual disease being rare, together these genetic disorders account for a large proportion of kidney disease cases. With the introduction of massively parallel sequencing, genetic testing has become more accessible, but a comprehensive analysis of the diagnostic yield is lacking. This review gives an overview of the diagnostic yield of genetic testing across and within the full range of kidney disease phenotypes through a systematic literature search that resulted in 115 included articles. Patient, test, and cohort characteristics that can influence the diagnostic yield are highlighted. Detection of copy number variations and their contribution to the diagnostic yield is described for all phenotype groups. Also, the impact of a genetic diagnosis for a patient and family members, which can be diagnostic, therapeutic, and prognostic, is shown through the included articles. This review will allow clinicians to estimate an a priori probability of finding a genetic cause for the kidney disease in their patients.
Collapse
Affiliation(s)
- Laura R. Claus
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rozemarijn Snoek
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nine V. A. M. Knoers
- Department of GeneticsUniversity Medical Center GroningenGroningenThe Netherlands
| | | |
Collapse
|
9
|
König JC, Karsay R, Gerß J, Schlingmann KP, Dahmer-Heath M, Telgmann AK, Kollmann S, Ariceta G, Gillion V, Bockenhauer D, Bertholet-Thomas A, Mastrangelo A, Boyer O, Lilien M, Decramer S, Schanstra J, Pohl M, Schild R, Weber S, Hoefele J, Drube J, Cetiner M, Hansen M, Thumfart J, Tönshoff B, Habbig S, Liebau MC, Bald M, Bergmann C, Pennekamp P, Konrad M. Refining Kidney Survival in 383 Genetically Characterized Patients With Nephronophthisis. Kidney Int Rep 2022; 7:2016-2028. [PMID: 36090483 PMCID: PMC9459005 DOI: 10.1016/j.ekir.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Nephronophthisis (NPH) comprises a group of rare disorders accounting for up to 10% of end-stage kidney disease (ESKD) in children. Prediction of kidney prognosis poses a major challenge. We assessed differences in kidney survival, impact of variant type, and the association of clinical characteristics with declining kidney function. Methods Data was obtained from 3 independent sources, namely the network for early onset cystic kidney diseases clinical registry (n = 105), an online survey sent out to the European Reference Network for Rare Kidney Diseases (n = 60), and a literature search (n = 218). Results A total of 383 individuals were available for analysis: 116 NPHP1, 101 NPHP3, 81 NPHP4 and 85 NPHP11/TMEM67 patients. Kidney survival differed between the 4 cohorts with a highly variable median age at onset of ESKD as follows: NPHP3, 4.0 years (interquartile range 0.3–12.0); NPHP1, 13.5 years (interquartile range 10.5–16.5); NPHP4, 16.0 years (interquartile range 11.0–25.0); and NPHP11/TMEM67, 19.0 years (interquartile range 8.7–28.0). Kidney survival was significantly associated with the underlying variant type for NPHP1, NPHP3, and NPHP4. Multivariate analysis for the NPHP1 cohort revealed growth retardation (hazard ratio 3.5) and angiotensin-converting enzyme inhibitor (ACEI) treatment (hazard ratio 2.8) as 2 independent factors associated with an earlier onset of ESKD, whereas arterial hypertension was linked to an accelerated glomerular filtration rate (GFR) decline. Conclusion The presented data will enable clinicians to better estimate kidney prognosis of distinct patients with NPH and thereby allow personalized counseling.
Collapse
|
10
|
Bleyer AJ, Wolf MT, Kidd KO, Zivna M, Kmoch S. Autosomal dominant tubulointerstitial kidney disease: more than just HNF1β. Pediatr Nephrol 2022; 37:933-946. [PMID: 34021396 PMCID: PMC8722360 DOI: 10.1007/s00467-021-05118-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) refers to a group of disorders with a bland urinary sediment, slowly progressive chronic kidney disease (CKD), and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD in both children and adults. ADTKD-REN presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-UMOD is associated with gout and CKD that may present in adolescence and slowly progresses to kidney failure. HNF1β mutations often present in childhood with anatomic abnormalities such as multicystic or dysplastic kidneys, as well as CKD and a number of other extra-kidney manifestations. ADTKD-MUC1 is less common in childhood, and progressive CKD is its sole clinical manifestation, usually beginning in the late teenage years. This review describes the pathophysiology, genetics, clinical characteristics, diagnosis, and treatment of the different forms of ADTKD, with an emphasis on diagnosis. We also present data on kidney function in children with ADTKD from the Wake Forest Rare Inherited Kidney Disease Registry.
Collapse
Affiliation(s)
- Anthony J Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Matthias T Wolf
- Pediatric Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-0936, USA
| | - Kendrah O Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Zivna
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Sakakibara N, Nozu K, Yamamura T, Horinouchi T, Nagano C, Ye MJ, Ishiko S, Aoto Y, Rossanti R, Hamada R, Okamoto N, Shima Y, Nakanishi K, Matsuo M, Iijima K, Morisada N. Comprehensive genetic analysis using next-generation sequencing for the diagnosis of nephronophthisis-related ciliopathies in the Japanese population. J Hum Genet 2022; 67:427-440. [PMID: 35140360 DOI: 10.1038/s10038-022-01020-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Nephronophthisis is an autosomal-recessive kidney disease that is caused by abnormalities in primary cilia. Nephronophthisis-related ciliopathies (NPHP-RCs) are a common cause of end-stage kidney disease (ESKD) in children and adolescents. NPHP-RCs are often accompanied by extrarenal manifestations, including intellectual disability, retinitis pigmentosa, or polydactyly. Although more than 100 causative genes have been identified, its diagnosis is difficult because the clinical features of each mutation often overlap. From September 2010 to August 2021, we performed genetic analysis, including next-generation sequencing (NGS), in 574 probands with kidney dysfunction and retrospectively studied cases genetically diagnosed with NPHP-RCs. RESULTS: We detected mutations related to NPHP-RCs in 93 patients from 83 families. Members of 60 families were diagnosed using NGS, and the mutations and the corresponding number of families are as follows: NPHP1 (24), NPHP3 (10), OFD1 (7), WDR35 (5), SDCCAG8 (4), BBS10 (3), TMEM67 (3), WDR19 (3), BBS1 (2), BBS2 (2), IFT122 (2), IFT140 (2), IQCB1 (2), MKKS (2), SCLT1 (2), TTC21B (2), ALMS1 (1), ANKS6 (1), BBS4 (1), BBS12 (1), CC2D2A (1), DYNC2H1 (1), IFT172 (1), and MAPKBP1 (1). A total of 39 cases (41.9%) progressed to ESKD at the time of genetic analysis, whereas 58 cases (62.3%) showed extrarenal manifestations, the most common being developmental delay, intellectual disability, and autism spectrum disorder in 44 patients. Comprehensive genetic analysis using NGS is useful for diagnosing patients with NPHP-RCs.
Collapse
Affiliation(s)
- Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ming Juan Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.,Hospital Director, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan. .,Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan.
| |
Collapse
|
12
|
Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease. Genes (Basel) 2021; 12:genes12111762. [PMID: 34828368 PMCID: PMC8623546 DOI: 10.3390/genes12111762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.
Collapse
Affiliation(s)
- Shabarni Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- Correspondence:
| | - Justyna E. Ozimek-Kulik
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia
- Department of Paediatric Nephrology, Sydney Children’s Hospital Network, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Jacqueline Kathleen Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
| |
Collapse
|
13
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
14
|
Diagnostic utility of whole-genome sequencing for nephronophthisis. NPJ Genom Med 2020; 5:38. [PMID: 33024573 PMCID: PMC7506526 DOI: 10.1038/s41525-020-00147-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Next-generation sequencing has revolutionized the molecular diagnosis of individuals affected by genetic kidney diseases. Indeed, rapid genetic testing in individuals with suspected inherited nephropathy has not only important implications for diagnosis and prognosis but also for genetic counseling. Nephronophthisis (NPHP) and related syndromes, a leading cause of end-stage renal failure, are autosomal recessive disorders characterized by the variable presentation and considerable locus heterogeneity with more than 90 genes described as single-gene causes. In this case report, we demonstrate the utility of whole-genome sequencing (WGS) for the molecular diagnosis of NPHP by identifying two putative disease-causing intronic mutations in the NPHP3 gene, including one deep intronic variant. We further show that both intronic variants, by affecting splicing, result in a truncated nephrocystin-3 protein. This study provides a framework for applying WGS as a first-line diagnostic tool for highly heterogeneous disease such as NPHP and further suggests that deep intronic variations are an important underestimated cause of monogenic disorders.
Collapse
|
15
|
Köhler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine JP, Gargano M, Harris NL, Matentzoglu N, McMurry JA, Osumi-Sutherland D, Cipriani V, Balhoff JP, Conlin T, Blau H, Baynam G, Palmer R, Gratian D, Dawkins H, Segal M, Jansen AC, Muaz A, Chang WH, Bergerson J, Laulederkind SJF, Yüksel Z, Beltran S, Freeman AF, Sergouniotis PI, Durkin D, Storm AL, Hanauer M, Brudno M, Bello SM, Sincan M, Rageth K, Wheeler MT, Oegema R, Lourghi H, Della Rocca MG, Thompson R, Castellanos F, Priest J, Cunningham-Rundles C, Hegde A, Lovering RC, Hajek C, Olry A, Notarangelo L, Similuk M, Zhang XA, Gómez-Andrés D, Lochmüller H, Dollfus H, Rosenzweig S, Marwaha S, Rath A, Sullivan K, Smith C, Milner JD, Leroux D, Boerkoel CF, Klion A, Carter MC, Groza T, Smedley D, Haendel MA, Mungall C, Robinson PN. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res 2020; 47:D1018-D1027. [PMID: 30476213 PMCID: PMC6324074 DOI: 10.1093/nar/gky1105] [Citation(s) in RCA: 438] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
The Human Phenotype Ontology (HPO)—a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases—is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO’s interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes.
Collapse
Affiliation(s)
- Sebastian Köhler
- Charité Centrum für Therapieforschung, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany.,Einstein Center Digital Future, Berlin 10117, Germany.,Monarch Initiative, monarchinitiative.org
| | - Leigh Carmody
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nicole Vasilevsky
- Monarch Initiative, monarchinitiative.org.,Oregon Health & Science University, Portland, OR 97217, USA
| | - Julius O B Jacobsen
- Monarch Initiative, monarchinitiative.org.,Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel Danis
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jean-Philippe Gourdine
- Monarch Initiative, monarchinitiative.org.,Oregon Health & Science University, Portland, OR 97217, USA
| | - Michael Gargano
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nomi L Harris
- Monarch Initiative, monarchinitiative.org.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicolas Matentzoglu
- Monarch Initiative, monarchinitiative.org.,European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Julie A McMurry
- Monarch Initiative, monarchinitiative.org.,Linus Pauling institute, Oregon State University, Corvallis, OR, USA
| | - David Osumi-Sutherland
- Monarch Initiative, monarchinitiative.org.,European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Valentina Cipriani
- Monarch Initiative, monarchinitiative.org.,William Harvey Research Institute, Queen Mary University College of London.,UCL Genetics Institute, University College of London.,UCL Institute of Ophthalmology, University College of London
| | - James P Balhoff
- Monarch Initiative, monarchinitiative.org.,Renaissance Computing Institute, University of North Carolina at Chapel Hill
| | - Tom Conlin
- Monarch Initiative, monarchinitiative.org.,Linus Pauling institute, Oregon State University, Corvallis, OR, USA
| | - Hannah Blau
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia, Department of Health, Government of Western Australia, WA, Australia.,School of Paediatrics and Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Spatial Sciences, Department of Science and Engineering, Curtin University, Perth, WA, Australia.,The Office of Population Health Genomics, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Richard Palmer
- Spatial Sciences, Department of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Dylan Gratian
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia, Department of Health, Government of Western Australia, WA, Australia
| | - Hugh Dawkins
- The Office of Population Health Genomics, Department of Health, Government of Western Australia, Perth, WA, Australia
| | | | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | - Ahmed Muaz
- Monarch Initiative, monarchinitiative.org.,Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Willie H Chang
- Centre for Computational Medicine, Hospital for Sick Children and Department of Computer Science, University of Toronto, Toronto, Canada
| | - Jenna Bergerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stanley J F Laulederkind
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, 8701 Watertown Plank Road Milwaukee, WI 53226, USA
| | | | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Daniel Durkin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Andrea L Storm
- ICF, Rockville, MD, USA.,National Center for Advancing Translational Sciences, Office of Rare Diseases Research, National Institutes of Health, Bethesda, MD, USA
| | - Marc Hanauer
- INSERM, US14-Orphanet, Plateforme Maladies Rares, 75014 Paris, France
| | - Michael Brudno
- Centre for Computational Medicine, Hospital for Sick Children and Department of Computer Science, University of Toronto, Toronto, Canada
| | | | - Murat Sincan
- Sanford Imagenetics, Sanford Health, Sioux Falls, SD, USA
| | - Kayli Rageth
- Sanford Imagenetics, Sanford Health, Sioux Falls, SD, USA
| | - Matthew T Wheeler
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, the Netherlands
| | - Halima Lourghi
- INSERM, US14-Orphanet, Plateforme Maladies Rares, 75014 Paris, France
| | - Maria G Della Rocca
- ICF, Rockville, MD, USA.,National Center for Advancing Translational Sciences, Office of Rare Diseases Research, National Institutes of Health, Bethesda, MD, USA
| | - Rachel Thompson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - James Priest
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ayushi Hegde
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ruth C Lovering
- Institute of Cardiovascular Science, University College London, UK
| | | | - Annie Olry
- INSERM, US14-Orphanet, Plateforme Maladies Rares, 75014 Paris, France
| | - Luigi Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morgan Similuk
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xingmin A Zhang
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - David Gómez-Andrés
- Child Neurology Unit. Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Hanns Lochmüller
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain.,Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Hélène Dollfus
- Centre for Rare Eye Diseases CARGO, SENSGENE FSMR Network, Strasbourg University Hospital, Strasbourg, France
| | - Sergio Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Shruti Marwaha
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Ana Rath
- INSERM, US14-Orphanet, Plateforme Maladies Rares, 75014 Paris, France
| | - Kathleen Sullivan
- Department of Pediatrics, Division of Allergy Immunology, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | - Joshua D Milner
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dorothée Leroux
- Centre for Rare Eye Diseases CARGO, SENSGENE FSMR Network, Strasbourg University Hospital, Strasbourg, France
| | | | - Amy Klion
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melody C Carter
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tudor Groza
- Monarch Initiative, monarchinitiative.org.,Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Damian Smedley
- Monarch Initiative, monarchinitiative.org.,Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Melissa A Haendel
- Monarch Initiative, monarchinitiative.org.,Oregon Health & Science University, Portland, OR 97217, USA.,Linus Pauling institute, Oregon State University, Corvallis, OR, USA
| | - Chris Mungall
- Monarch Initiative, monarchinitiative.org.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter N Robinson
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
16
|
Chen F, Dai L, Zhang J, Li F, Cheng J, Zhao J, Zhang B. A case report of NPHP1 deletion in Chinese twins with nephronophthisis. BMC MEDICAL GENETICS 2020; 21:84. [PMID: 32306954 PMCID: PMC7168837 DOI: 10.1186/s12881-020-01025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/13/2020] [Indexed: 12/02/2022]
Abstract
Background Nephronophthisis (NPHP) is a rare autosomal recessive inherited disorder with high heterogeneity. The majority of NPHP patients progress to end-stage renal disease (ESRD) within the first three decades of life. As an inherited disorder with highly genetic heterogeneity and clinical presentations, NPHP still poses a challenging task for nephrologists without special training to make a well-judged decision on its precise diagnosis, let alone its mechanism and optimal therapy. Case presentation A Chinese family with NPHP was recruited in current study. The clinical characteristics (including findings from renal biopsy) of NPHP patients were collected from medical records and the potential responsible genes were explored by the whole exome sequencing (WES). A homozygous deletion of NPHP1 (1–20 exons) was found in both affected patients, which was further confirmed by quantitative PCR. Conclusions Homozygous full gene deletion of the NPHP1 gene was identified in a Chinese family with NPHP, which was the molecular pathogenic basis of this disorder. Furthermore, identification of the pathogenic genes for those affected patients can help to have a full knowledge on NPHP’s molecular mechanism and precise treatment.
Collapse
Affiliation(s)
- Feng Chen
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Limeng Dai
- Department of Medical Genetics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jun Zhang
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Furong Li
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jinbo Cheng
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Bo Zhang
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
17
|
Chen W, Guo Z, Qian L, Wang L. Comorbidities in situs inversus totalis: A hospital-based study. Birth Defects Res 2020; 112:418-426. [PMID: 31994846 DOI: 10.1002/bdr2.1652] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Few studies have assessed the comorbid diseases in situs inversus totalis (SIT) comprehensively. The aim of this study was to provide insight into the spectrum and prevalence of comorbidities in SIT. METHODS Children ≤18 years of age with SIT were enrolled in this retrospective observational study. Situs status and comorbidities were independently confirmed by two physicians, based on review of radiologic, ultrasonic examination, operative records, and case notes. RESULTS A total of 155 children (median age: 1.24 years; range: 1 day-17.8 years) confirmed to have SIT were recruited between January 2008 and December 2018. Associated conditions were diagnosed in 114 children (73.5%). Among them, 25 children (16.1%) had multiple anomalies affecting two or more organ systems. The most commonly associated conditions were congenital heart defects (n = 72, 46.5%) followed by primary ciliary dyskinesia (n = 19, 12.3%), renal disorders (n = 12, 7.7%), biliary atresia (n = 7, 4.5%), skeletal dysplasia (n = 8, 5.2%), and mental retardation (n = 4, 2.6%). CONCLUSION A substantial proportion of children with SIT have comorbidities affecting multiple systems, especially cardiovascular and respiratory abnormalities. Children with SIT warrant careful examination for the presence of congenital and acquired abnormalities.
Collapse
Affiliation(s)
- Weicheng Chen
- Cardiothoracic Surgery Department, Children's Hospital of Fudan University, Shanghai, China
| | - Zhuoyao Guo
- Respirology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Liling Qian
- Respirology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Libo Wang
- Respirology Department, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
18
|
Tan K, Liu P, Pang L, Yang W, Hou F. A human ciliopathy with polycystic ovarian syndrome and multiple subcutaneous cysts: A rare case report. Medicine (Baltimore) 2018; 97:e13531. [PMID: 30558011 PMCID: PMC6320131 DOI: 10.1097/md.0000000000013531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Ciliopathies is a group of clinically and genetically overlapping disorders due to cilia abnormalities and multiple organ systems are involved in. PATIENT CONCERNS We present a young female patient who showed renal function impairment, Caroli syndrome (CS), liver cirrhosis, polycystic ovarian syndrome, and multiple subcutaneous cysts. DIAGNOSES The patient was diagnosed with ciliopathy according to the clinical manifestations and whole-genome sequencing. INTERVENTIONS She received treatment of intravenous albumin, polyene phosphatidyl choline, furosemide, and antisterone. OUTCOMES The patient showed clinical improvement in her edema and liver tests, and ultrasonography revealed that the ascites had disappeared. Unfortunately, the edema relapsed a year later. The patient received the same treatment as before, and there was clinical improvement of the edema. Since the family cannot afford liver and kidney transplantation, the patient only accepted symptomatic treatment. LESSONS Polycystic ovarian syndrome and multiple subcutaneous cysts have never before been reported to be associated with ciliopathy. This finding could remind doctors to consider the possibility of ciliopathy disease for patients suffering from similar conditions. In addition, the phenotype of the patient differs from those of patients reported with the same mutations, which also reminds doctors that the clinical manifestation of a given mutation may show patient-specific differences. This case report extends the phenotypic spectrum of ciliopathy, and these findings might represent a new ciliopathy syndrome, which could facilitate the diagnosis of ciliopathies.
Collapse
Affiliation(s)
- Kangan Tan
- Department of Infectious Diseases and the Center for Liver Diseases, Peking University First Hospital, Beijing
| | - Peng Liu
- Department of Cardiology, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Inner Mongolia
| | - Lili Pang
- Department of Infectious Diseases and the Center for Liver Diseases, Peking University First Hospital, Beijing
| | - Wanna Yang
- Department of Infectious Diseases and the Center for Liver Diseases, Peking University First Hospital, Beijing
| | - Fengqin Hou
- Department of Infectious Diseases and the Center for Liver Diseases, Peking University First Hospital, Beijing
- Department of Infectious Diseases, Peking University International Hospital, China
| |
Collapse
|