1
|
Bökenkamp A, Ariceta G, Böckenhauer D, Devuyst O, Emma F, van Bennekom D, Levtchenko E, Sayer J, Servais A, Vargas R, Zaniew M, Prikhodina L. Dent disease: clinical practice recommendations. Nephrol Dial Transplant 2025; 40:852-864. [PMID: 39794284 DOI: 10.1093/ndt/gfaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Indexed: 01/13/2025] Open
Abstract
Dent disease is a rare X-linked tubulopathy that is characterized by low-molecular-weight proteinuria associated with hypercalciuria, which may lead to nephrolithiasis, nephrocalcinosis, and kidney failure between the third and fifth decades of life in 30%-80% of affected males. The disease is most often associated with various manifestations of proximal tubular dysfunction. Affected individuals may present nephrotic-range proteinuria which may be misinterpreted and cause diagnostic delay. Due to its rarity, there is limited evidence to guide diagnosis and management. These clinical practice recommendations summarize the current knowledge on Dent disease and provide guidance for diagnosis and management. The recommendations are based on a systematic search of the literature and were endorsed by a Delphi procedure among stakeholders in the field as well as the respective ERA and ESPN working groups.
Collapse
Affiliation(s)
- Arend Bökenkamp
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Gema Ariceta
- Pediatric Nephrology, Hospital Vall d' Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Detlef Böckenhauer
- Pediatric Nephrology, University Hospitals Leuven and Department of Cellular and Molecular Medicine, KUL, Leuven, Belgium
- Great Ormond Street Hospital for Children and Department of Renal Medicine, UCL, London, UK
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; UCLouvain Medical School, Brussels, Belgium
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Elena Levtchenko
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - John Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Aude Servais
- Nephrology and Transplantation Department, Inherited Kidney Diseases Reference Center, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Inserm U1163, Imagine Institute, Université de Paris, Paris, France
| | - Rosa Vargas
- Department of Genetics, European Hospital Georges Pompidou, Paris, France
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Larisa Prikhodina
- Veltishev Research Clinical Institute for Pediatrics & Pediatric Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Mitrotti A, Giliberti M, Di Leo V, di Bari I, Pontrelli P, Gesualdo L. Hidden genetics behind glomerular scars: an opportunity to understand the heterogeneity of focal segmental glomerulosclerosis? Pediatr Nephrol 2024; 39:1685-1707. [PMID: 37728640 PMCID: PMC11026212 DOI: 10.1007/s00467-023-06046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a complex disease which describes different kinds of kidney defects, not exclusively linked with podocyte defects. Since nephrin mutation was first described in association with early-onset nephrotic syndrome (NS), many advancements have been made in understanding genetic patterns associated with FSGS. New genetic causes of FSGS have been discovered, displaying unexpected genotypes, and recognizing possible site of damage. Many recent large-scale sequencing analyses on patients affected by idiopathic chronic kidney disease (CKD), kidney failure (KF) of unknown origin, or classified as FSGS, have revealed collagen alpha IV genes, as one of the most frequent sites of pathogenic mutations. Also, recent interest in complex and systemic lysosomal storage diseases, such as Fabry disease, has highlighted GLA mutations as possible causes of FSGS. Tubulointerstitial disease, recently classified by KDIGO based on genetic subtypes, when associated with UMOD variants, may phenotypically gain FSGS features, as well as ciliopathy genes or others, otherwise leading to completely different phenotypes, but found carrying pathogenic variants with associated FSGS phenotype. Thus, glomerulosclerosis may conceal different heterogeneous conditions. When a kidney biopsy is performed, the principal objective is to provide an accurate diagnosis. The broad spectrum of phenotypic expression and genetic complexity is demonstrating that a combined path of management needs to be applied. Genetic investigation should not be reserved only to selected cases, but rather part of medical management, integrating with clinical and renal pathology records. FSGS heterogeneity should be interpreted as an interesting opportunity to discover new pathways of CKD, requiring prompt genotype-phenotype correlation. In this review, we aim to highlight how FSGS represents a peculiar kidney condition, demanding multidisciplinary management, and in which genetic analysis may solve some otherwise unrevealed idiopathic cases. Unfortunately there is not a uniform correlation between specific mutations and FSGS morphological classes, as the same variants may be identified in familial cases or sporadic FSGS/NS or manifest a variable spectrum of the same disease. These non-specific features make diagnosis challenging. The complexity of FSGS genotypes requires new directions. Old morphological classification does not provide much information about the responsible cause of disease and misdiagnoses may expose patients to immunosuppressive therapy side effects, mistaken genetic counseling, and misguided kidney transplant programs.
Collapse
Affiliation(s)
- Adele Mitrotti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.
| | - Marica Giliberti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Di Leo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Ighli di Bari
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Wang Y, Xu L, Zhang Y, Fu H, Gao L, Guan Y, Gu W, Sun J, Chen X, Yang F, Lai E, Wang J, Jin Y, Kou Z, Qiu X, Mao J, Hu L. Dent disease 1-linked novel CLCN5 mutations result in aberrant location and reduced ion currents. Int J Biol Macromol 2024; 257:128564. [PMID: 38061527 DOI: 10.1016/j.ijbiomac.2023.128564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Dent disease is a rare renal tubular disease with X-linked recessive inheritance characterized by low molecular weight proteinuria (LMWP), hypercalciuria, and nephrocalcinosis. Mutations disrupting the 2Cl-/1H+ exchange activity of chloride voltage-gated channel 5 (CLCN5) have been causally linked to the most common form, Dent disease 1 (DD1), although the pathophysiological mechanisms remain unclear. Here, we conducted the whole exome capture sequencing and bioinformatics analysis within our DD1 cohort to identify two novel causal mutations in CLCN5 (c.749 G > A, p. G250D, c.829 A > C, p. T277P). Molecular dynamics simulations of ClC-5 homology model suggested that these mutations potentially may induce structural changes, destabilizing ClC-5. Overexpression of variants in vitro revealed aberrant subcellular localization in the endoplasmic reticulum (ER), significant accumulation of insoluble aggregates, and disrupted ion transport function in voltage clamp recordings. Moreover, human kidney-2 (HK-2) cells overexpressing either G250D or T277P displayed higher cell-substrate adhesion, migration capability but reduced endocytic function, as well as substantially altered transcriptomic profiles with G250D resulting in stronger deleterious effects. These cumulative findings supported pathogenic role of these ClC-5 mutations in DD1 and suggested a cellular mechanism for disrupted renal function in Dent disease patients, as well as a potential target for diagnostic biomarker or therapeutic strategy development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lizhen Xu
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuelin Guan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingmiao Sun
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - EnYin Lai
- Department of Physiology School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yanyan Jin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ziqi Kou
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xingyu Qiu
- Department of Physiology School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
4
|
Burballa C, Duran M, Martínez C, Ariceta G, Cantero-Recasens G, Meseguer A. Isolation and characterization of exosome-enriched urinary extracellular vesicles from Dent's disease type 1 Spanish patients. Nefrologia 2023; 43 Suppl 2:77-84. [PMID: 38286722 DOI: 10.1016/j.nefroe.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/13/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Dent's disease type 1 (DD1) is a rare X-linked hereditary pathology caused by CLCN5 mutations that is characterized mainly by proximal tubule dysfunction, hypercalciuria, nephrolithiasis/nephrocalcinosis, progressive chronic kidney disease, and low-weight proteinuria, the molecular hallmark of the disease. Currently, there is no specific curative treatment, only symptomatic and does not prevent the progression of the disease. In this study we have isolated and characterized urinary extracellular vesicles (uEVs) enriched in exosomes that will allow us to identify biomarkers associated with DD1 progression and a better understanding of the pathophysiological bases of the disease. MATERIALS AND METHODS Through a national call from the Spanish Society of Nephrology (SEN) and the Spanish Society of Pediatric Nephrology (AENP), urine samples were obtained from patients and controls from different Spanish hospitals, which were processed to obtain the uEVS. The data of these patients were provided by the respective nephrologists and/or extracted from the RENALTUBE registry. The uEVs were isolated by ultracentrifugation, morphologically characterized and their protein and microRNA content extracted. RESULTS 25 patients and 10 controls were recruited, from which the urine was processed to isolate the uEVs. Our results showed that the relative concentration of uEVs/mL is lower in patients compared to controls (0.26 × 106 uEVs/mL vs 1.19 × 106 uEVs/mL, p < 0.01). In addition, the uEVs of the patients were found to be significantly larger than those of the control subjects (mean diameter: 187.8 nm vs 143.6 nm, p < 0.01). Finally, our data demonstrated that RNA had been correctly extracted from both patient and control exosomes. CONCLUSIONS In this work we describe the isolation and characterization of uEVs from patients with Dent 1 disease and healthy controls, that shall be useful for the subsequent study of differentially expressed cargo molecules in this pathology.
Collapse
Affiliation(s)
- Carla Burballa
- Departamento de Nefrología, Hospital del Mar, Barcelona, Spain
| | - Mònica Duran
- Grupo de Fisiopatología Renal, Institut de Recerca Vall d'Hebron (VHIR), Barcelona, Spain
| | - Cristina Martínez
- Grupo de Fisiopatología Renal, Institut de Recerca Vall d'Hebron (VHIR), Barcelona, Spain; Grupo de Investigación Traslacional Vascular y Renal, IRB-Lleida, Lleida, Spain
| | - Gema Ariceta
- Servicio de Nefrología Pediátrica, Hospital Universitario Vall d'Hebron (HUVH), Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Anna Meseguer
- Grupo de Fisiopatología Renal, Institut de Recerca Vall d'Hebron (VHIR), Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| |
Collapse
|
5
|
Dent Disease Type 1: Still an Under-Recognized Renal Proximal Tubulopathy: A Case Report. REPORTS 2022. [DOI: 10.3390/reports5040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dent disease is a rare renal tubular disorder that appears almost exclusively in males. The diagnosis is still challenging, and therefore Dent disease is occasionally misdiagnosed. We report a case of a 45-year-old man with Dent disease who developed renal failure. Since the age of 7 months, he persistently exhibited proteinuria. At the age of 24 years, he underwent kidney biopsy, which revealed focal segmental glomerulosclerosis. The patient’s brother was found to have proteinuria since he was 2 years old. At the age of 45 years, the patient was transferred to a tertiary care nephrologist, and Dent disease was suspected. Genetic testing revealed a CLCN5 mutation. We highlight the broad spectrum of clinical manifestations in Dent disease and the importance of having a high clinical suspicion to attain a definitive diagnosis. Furthermore, future research regarding the clinical course of the disease, prognosis, and effective treatment options is needed.
Collapse
|
6
|
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part I-diagnostic workup. Pediatr Nephrol 2022; 37:2013-2036. [PMID: 34910242 PMCID: PMC9307538 DOI: 10.1007/s00467-021-05328-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/22/2023]
Abstract
Rickets is a disease of the growing child arising from alterations in calcium and phosphate homeostasis resulting in impaired apoptosis of hypertrophic chondrocytes in the growth plate. Its symptoms depend on the patients' age, duration of disease, and underlying disorder. Common features include thickened wrists and ankles due to widened metaphyses, growth failure, bone pain, muscle weakness, waddling gait, and leg bowing. Affected infants often show delayed closure of the fontanelles, frontal bossing, and craniotabes. The diagnosis of rickets is based on the presence of these typical clinical symptoms and radiological findings on X-rays of the wrist or knee, showing metaphyseal fraying and widening of growth plates, in conjunction with elevated serum levels of alkaline phosphatase. Nutritional rickets due to vitamin D deficiency and/or dietary calcium deficiency is the most common cause of rickets. Currently, more than 20 acquired or hereditary causes of rickets are known. The latter are due to mutations in genes involved in vitamin D metabolism or action, renal phosphate reabsorption, or synthesis, or degradation of the phosphaturic hormone fibroblast growth factor 23 (FGF23). There is a substantial overlap in the clinical features between the various entities, requiring a thorough workup using biochemical analyses and, if necessary, genetic tests. Part I of this review focuses on the etiology, pathophysiology and clinical findings of rickets followed by the presentation of a diagnostic approach for correct diagnosis. Part II focuses on the management of rickets, including new therapeutic approaches based on recent clinical practice guidelines.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| |
Collapse
|
7
|
Domingo-Gallego A, Pybus M, Madariaga L, Piñero-Fernández JA, González-Pastor S, López-González M, Simarro-Rueda E, Quintanilla-Mata ML, Matoses-Ruipérez ML, Ejarque-Vila L, Gall ECL, Guirado L, Torra R, Ariceta G, Ars E. Clinical and genetic characterization of a cohort of proteinuric patients with biallelic CUBN variants. Nephrol Dial Transplant 2021; 37:1906-1915. [PMID: 34610128 DOI: 10.1093/ndt/gfab285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Proteinuria is a well-known risk factor for progressive kidney impairment. Recently, C-terminal cubilin (CUBN) variants have been associated with isolated proteinuria without progression of kidney disease. METHODS Genetic testing of 347 families with proteinuria of suspected monogenic cause was performed by next-generation sequencing of a custom-designed kidney disease gene panel. Families with CUBN biallelic proteinuria-causing variants were studied at the clinical, genetic, laboratory, and pathologic levels. RESULTS Twelve families (15 patients) bearing homozygous or compound heterozygous proteinuria-causing variants in the C-terminal CUBN gene were identified, representing 3.5% of the total cohort. We identified 14 different sequence variants, five of which were novel. The median age at diagnosis of proteinuria was 4 years (range 9 months to 44 years), and in most cases proteinuria was detected incidentally. Thirteen patients had moderate-severe proteinuria at diagnosis without nephrotic syndrome. These patients showed lack of response to angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blocker (ARB) treatment, normal kidney biopsy, and preservation of normal kidney function over time. The two remaining patients presented a more severe phenotype, likely caused by associated comorbidities. CONCLUSIONS Identification of C-terminal pathogenic CUBN variants is diagnostic of an entity characterized by glomerular proteinuria, normal kidney histology, and lack of response to ACEi/ARB treatment. This study adds evidence and increases awareness about albuminuria caused by C-terminal variants in the CUBN gene, which is a benign condition usually diagnosed in childhood with preserved renal function until adulthood.
Collapse
Affiliation(s)
- Andrea Domingo-Gallego
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Leire Madariaga
- Pediatric Nephrology Department, Cruces University Hospital, Instituto de Investigación Sanitaria Biocruces-Bizkaia, CIBERER, CIBERDEM, Universidad del País Vasco UPV/EHU, Barakaldo, Spain
| | | | - Sara González-Pastor
- Pediatric Nephrology Department, Hospital Universitario Germans Trias i Pujol, Barcelona, Catalonia, Spain
| | - Mercedes López-González
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Esther Simarro-Rueda
- Clinical Analysis Department, Hospital General Universitario de Albacete, Castilla-La Mancha, Spain
| | | | | | - Laia Ejarque-Vila
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain
| | - Emilie Cornec-Le Gall
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre Hospitalier Universitaire, Brest, France; UMR1078 Génétique, Génomique Fonctionnelle et Biotechnologies, INSERM, Université de Brest, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Lluís Guirado
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Roser Torra
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Gema Ariceta
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Jin YY, Huang LM, Quan XF, Mao JH. Dent disease: classification, heterogeneity and diagnosis. World J Pediatr 2021; 17:52-57. [PMID: 32248351 DOI: 10.1007/s12519-020-00357-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Dent disease is a rare tubulopathy characterized by manifestations of proximal tubular dysfunction, which occurs almost exclusively in males. It mainly presents symptoms in early childhood and may progress to end-stage renal failure between the 3rd and 5th decades of human life. According to its various genetic basis and to clinical signs and symptoms, researchers define two forms of Dent disease (Dent diseases 1 and 2) and suggest that these forms are produced by mutations in the CLCN5 and OCRL genes, respectively. Dent diseases 1 and 2 account for 60% and 15% of all Dent disease cases, and their genetic cause is generally understood. However, the genetic cause of the remaining 25% of Dent disease cases remains unidentified. DATA SOURCES All relevant peer-reviewed original articles published thus far have been screened out from PubMed and have been referenced. RESULTS Genetic testing has been used greatly to identify mutation types of CLCN5 and OCRL gene, and next-generation sequencing also has been used to identify an increasing number of unknown genotypes. Gene therapy may bring new hope to the treatment of Dent disease. The abuse of hormones and immunosuppressive agents for the treatment of Dent disease should be avoided to prevent unnecessary harm to children. CONCLUSIONS The current research progress in classification, genetic heterogeneity, diagnosis, and treatment of Dent disease reviewed in this paper enables doctors and researchers to better understand Dent disease and provides a basis for improved prevention and treatment.
Collapse
Affiliation(s)
- Yan-Yan Jin
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310006, China
| | - Li-Min Huang
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310006, China
| | - Xiao-Fang Quan
- Chigene (Beijing) Translational Medical Research Center Co. Ltd, E2 Biomedical Park, No. 88 Kechuang Sixth Ave, Yizhuang, Beijing, China
| | - Jian-Hua Mao
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310006, China.
| |
Collapse
|
9
|
Huang LM, Mao JH. Glomerular podocyte dysfunction in inherited renal tubular disease. World J Pediatr 2021; 17:227-233. [PMID: 33625696 PMCID: PMC8253710 DOI: 10.1007/s12519-021-00417-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hereditary renal tubular disease can cause hypercalciuria, acid-base imbalance, hypokalemia, hypomagnesemia, rickets, kidney stones, etc. If these diseases are not diagnosed or treated in time, they can cause kidney damage and electrolyte disturbances, which can be detrimental to the maturation and development of the child. Glomerular involvement in renal tubular disease patients has only been considered recently. METHODS We screened 71 papers (including experimental research, clinical research, etc.) about Dent's disease, Gitelman syndrome, and cystinosis from PubMed, and made reference. RESULTS Glomerular disease was initially underestimated among the clinical signs of renal tubular disease or was treated merely as a consequence of the tubular damage. Renal tubular diseases affect glomerular podocytes through certain mechanisms resulting in functional damage, morphological changes, and glomerular lesions. CONCLUSIONS This article focuses on the progress of changes in glomerular podocyte function in Dent disease, Gitelman syndrome, and cystinosis for the purposes of facilitating clinically accurate diagnosis and scientific treatment and improving prognosis.
Collapse
Affiliation(s)
- Li-Min Huang
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou 310006, China
| | - Jian-Hua Mao
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou 310006, China.
| |
Collapse
|
10
|
Gianesello L, Del Prete D, Anglani F, Calò LA. Genetics and phenotypic heterogeneity of Dent disease: the dark side of the moon. Hum Genet 2020; 140:401-421. [PMID: 32860533 PMCID: PMC7889681 DOI: 10.1007/s00439-020-02219-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Dent disease is a rare genetic proximal tubulopathy which is under-recognized. Its phenotypic heterogeneity has led to several different classifications of the same disorder, but it is now widely accepted that the triad of symptoms low-molecular-weight proteinuria, hypercalciuria and nephrocalcinosis/nephrolithiasis are pathognomonic of Dent disease. Although mutations on the CLCN5 and OCRL genes are known to cause Dent disease, no such mutations are found in about 25–35% of cases, making diagnosis more challenging. This review outlines current knowledge regarding Dent disease from another perspective. Starting from the history of Dent disease, and reviewing the clinical details of patients with and without a genetic characterization, we discuss the phenotypic and genetic heterogeneity that typifies this disease. We focus particularly on all those confounding clinical signs and symptoms that can lead to a misdiagnosis. We also try to shed light on a concealed aspect of Dent disease. Although it is a proximal tubulopathy, its misdiagnosis may lead to patients undergoing kidney biopsy. In fact, some individuals with Dent disease have high-grade proteinuria, with or without hematuria, as in the clinical setting of glomerulopathy, or chronic kidney disease of uncertain origin. Although glomerular damage is frequently documented in Dent disease patients’ biopsies, there is currently no reliable evidence of renal biopsy being of either diagnostic or prognostic value. We review published histopathology reports of tubular and glomerular damage in these patients, and discuss current knowledge regarding the role of CLCN5 and OCRL genes in glomerular function.
Collapse
Affiliation(s)
- Lisa Gianesello
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Dorella Del Prete
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Franca Anglani
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy.
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| |
Collapse
|
11
|
A rare case of nephrotic syndrome associated with Dent's disease: a case report. CEN Case Rep 2020; 9:380-384. [PMID: 32533415 DOI: 10.1007/s13730-020-00491-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022] Open
Abstract
Dent's disease is a rare X-linked condition caused by a mutation in CLCN5 and OCRL gene, which impair the megalin-cubilin receptor-mediated endocytosis in kidney's proximal tubules. Thus, it may manifest as nephrotic-range low-molecular-weight proteinuria (LMWP). On the other hand, glomerular proteinuria, hypoalbuminemia, and edema formation are the key features of nephrotic syndrome that rarely found in Dent's disease. Here, we reported a man in his 30 s with Dent's disease presented with leg edema for 5 days. The laboratory results revealed hypoalbuminemia and a decrease of urine β2-microglobulin/urine protein ratio (Uβ2-MG /UP), indicating that the primary origin of proteinuria shifted from LMWP to glomerular proteins. The kidney biopsy revealed glomerular abnormality and calcium deposition in the renal medulla. Electron microscopy of the kidney tissue indicated extensive foot-process effacement of the glomerular podocytes and degeneration of tubular epithelium. After a combination of treatment with prednisolone and cyclosporine (CyA), the nephrotic syndrome was remitted. Given the atypical clinical presentation and the shift of LMWP to glomerular proteinuria in this patient, glomerulopathy and the Dent's disease existed separately in this patient.
Collapse
|
12
|
Gianesello L, Del Prete D, Ceol M, Priante G, Calò LA, Anglani F. From protein uptake to Dent disease: An overview of the CLCN5 gene. Gene 2020; 747:144662. [PMID: 32289351 DOI: 10.1016/j.gene.2020.144662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Proteinuria is a well-known risk factor, not only for renal disorders, but also for several other problems such as cardiovascular diseases and overall mortality. In the kidney, the chloride channel Cl-/H+ exchanger ClC-5 encoded by the CLCN5 gene is actively involved in preventing protein loss. This action becomes evident in patients suffering from the rare proximal tubulopathy Dent disease because they carry a defective ClC-5 due to CLCN5 mutations. In fact, proteinuria is the distinctive clinical sign of Dent disease, and mainly involves the loss of low-molecular-weight proteins. The identification of CLCN5 disease-causing mutations has greatly improved our understanding of ClC-5 function and of the ClC-5-related physiological processes in the kidney. This review outlines current knowledge regarding the CLCN5 gene and its protein product, providing an update on ClC-5 function in tubular and glomerular cells, and focusing on its relationship with proteinuria and Dent disease.
Collapse
Affiliation(s)
- Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| |
Collapse
|
13
|
Abstract
Proteinuria is a hallmark of kidney disease. Therefore, measurement of urine protein content plays a central role in any diagnostic work-up for kidney disease. In many cases, proteinuria analysis is restricted to the measurement of total protein content knowing that very high levels of proteinuria (nephrotic proteinuria) are characteristic of glomerular disease. Still, proteinuria can also be a manifestation of impaired tubular protein reabsorption or even be physiological. This review will discuss the physiology of renal protein handling and give guidance on a more sophisticated analysis of proteinuria differentiating albumin, low-molecular weight proteins and immunoglobulins. These non-invasive tests are available in most routine clinical laboratories and may guide the clinician in the diagnostic process before ordering far more expensive (molecular genetic testing) and/or invasive (kidney biopsy) diagnostics.
Collapse
|