1
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Sharma P, Chatrathi HE. Insights into the diverse mechanisms and effects of variant CUL3-induced familial hyperkalemic hypertension. Cell Commun Signal 2023; 21:286. [PMID: 37845702 PMCID: PMC10577937 DOI: 10.1186/s12964-023-01269-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/12/2023] [Indexed: 10/18/2023] Open
Abstract
Familial hyperkalemic hypertension (FHHt), also known as Pseudohypoaldosteronism type II (PHAII) or Gordon syndrome is a rare Mendelian disease classically characterized by hyperkalemia, hyperchloremic metabolic acidosis, and high systolic blood pressure. The most severe form of the disease is caused by autosomal dominant variants in CUL3 (Cullin 3), a critical subunit of the multimeric CUL3-RING ubiquitin ligase complex. The recent identification of a novel FHHt disease variant of CUL3 revealed intricacies within the underlying disease mechanism. When combined with studies on canonical CUL3 variant-induced FHHt, these findings further support CUL3's role in regulating renal electrolyte transport and maintaining systemic vascular tone. However, the pathophysiological effects of CUL3 variants are often accompanied by diverse systemic disturbances in addition to classical FHHt symptoms. Recent global proteomic analyses provide a rationale for these systemic disturbances, paving the way for future mechanistic studies to reveal how CUL3 variants dysregulate processes outside of the renovascular axis. Video Abstract.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
| | - Harish E Chatrathi
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
3
|
Peces R, Peces C, Espinosa L, Mena R, Blanco C, Tenorio-Castaño J, Lapunzina P, Nevado J. A Spanish Family with Gordon Syndrome Due to a Variant in the Acidic Motif of WNK1. Genes (Basel) 2023; 14:1878. [PMID: 37895227 PMCID: PMC10606608 DOI: 10.3390/genes14101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Gordon syndrome (GS) or familial hyperkalemic hypertension is caused by pathogenic variants in the genes WNK1, WNK4, KLHL3, and CUL3. Patients presented with hypertension, hyperkalemia despite average glomerular filtration rate, hyperchloremic metabolic acidosis, and suppressed plasma renin (PR) activity with normal plasma aldosterone (PA) and sometimes failure to thrive. GS is a heterogeneous genetic syndrome, ranging from severe cases in childhood to mild and sometimes asymptomatic cases in mid-adulthood. (2) Methods: We report here a sizeable Spanish family of six patients (four adults and two children) with GS. (3) Results: They carry a novel heterozygous missense variant in exon 7 of WNK1 (p.Glu630Gly). The clinical presentation in the four adults consisted of hypertension (superimposed pre-eclampsia in two cases), hyperkalemia, short stature with low body weight, and isolated hyperkalemia in both children. All patients also presented mild hyperchloremic metabolic acidosis and low PR activity with normal PA levels. Abnormal laboratory findings and hypertension were normalized by dietary salt restriction and low doses of thiazide or indapamide retard. (4) Conclusions: This is the first Spanish family with GS with a novel heterozygous missense variant in WNK1 (p.Glu630Gly) in the region containing the highly conserved acidic motif, which is showing a relatively mild phenotype, and adults diagnosed in mild adulthood. These data support the importance of missense variants in the WNK1 acidic domain in electrolyte balance/metabolism. In addition, findings in this family also suggest that indapamide retard or thiazide may be an adequate long-standing treatment for GS.
Collapse
Affiliation(s)
- Ramón Peces
- Department of Nephrology, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain
| | - Carlos Peces
- Area de Tecnología de la Información, SESCAM, 45003 Toledo, Spain;
| | - Laura Espinosa
- Department of Pediatric Nephrology, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain;
| | - Rocío Mena
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
| | - Carolina Blanco
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
| | - Jair Tenorio-Castaño
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- Network for Biomedical Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Pablo Lapunzina
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- Network for Biomedical Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Julián Nevado
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- Network for Biomedical Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| |
Collapse
|
4
|
Kelch-like protein 3 in human disease and therapy. Mol Biol Rep 2022; 49:9813-9824. [PMID: 35585379 DOI: 10.1007/s11033-022-07487-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Kelch-like protein 3 (KLHL3) is a substrate adaptor of Cullin3-RING ubiquitin ligase (CRL3), and KLHL3-CUL3 complex plays a vital role in the ubiquitination of specific substrates. Mutations and abnormal post-translational modifications of KLHL3-CUL3 affect substrate ubiquitination and may related to the pathogenesis of Gordon syndrome (GS), Primary Hyperparathyroidism (PHPT), Diabetes Mellitus (DM), Congenital Heart Disease (CHD), Pre-eclampsia (PE) and even cancers. Therefore, it is essential to understand the function and molecular mechanisms of KLHL3-CUL3 for the treatment of related diseases. In this review, we summary the structure and function of KLHL3-CUL3, the effect of KLHL3-CUL3 mutations and aberrant modifications in GS, PHPT, DM, CHD and PE. Moreover, we noted a possible role of KLHL3-CUL3 in carcinogenesis and provided ideas for targeting KLHL3-CUL3 for related disease treatment.
Collapse
|
5
|
Park JH, Kim JH, Ahn YH, Kang HG, Ha IS, Cheong HI. Gordon syndrome caused by a CUL3 mutation in a patient with short stature in Korea: a case report. J Pediatr Endocrinol Metab 2022; 35:253-257. [PMID: 34480842 DOI: 10.1515/jpem-2021-0361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022]
Abstract
Objectives: Gordon syndrome (GS), also known as pseudohypoaldosteronism type II, is a rare tubular disease characterized by hypertension, hyperkalemia, and metabolic acidosis. Its causative genes are CUL3, KLHL3, WNK1, and WNK4, and they are associated with varying severity of the disease. Herein, we report the first case of GS caused by a CUL3 mutation in a patient with short stature in Korea.Case presentation: A 7-year-old boy had hypertension, metabolic acidosis, and persistent hyperkalemia, which were initially detected during the evaluation of short stature. He was born small for gestational age at late preterm gestation. Laboratory test findings showed hyperkalemia with low trans-tubular potassium gradient, hyperchloremic metabolic acidosis with a normal anion gap, and low plasma renin levels. Genetic analysis revealed a heterozygous de novo mutation in the CUL3 gene (c.1377+1G > C in intron 9). Thus, a diagnosis of GS was made. The results of the endocrine function test (including growth hormone stimulation tests) were normal. After thiazide treatment, the patient's electrolyte levels were normalized. However, he presented with persistent hypertension and short stature.Conclusions: GS should be considered in children with short stature, hypertension, and hyperkalemia, and early treatment may reduce complications.
Collapse
Affiliation(s)
- Ji Hong Park
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Il Soo Ha
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Il Cheong
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|