1
|
Robinson CH, Smoyer WE, Cara-Fuentes G. Unraveling the Immunogenetic Mechanisms of Childhood Idiopathic Nephrotic Syndrome. J Pediatr 2025; 282:114595. [PMID: 40252964 DOI: 10.1016/j.jpeds.2025.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/16/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Affiliation(s)
- Cal H Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.
| | - William E Smoyer
- The Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Gabriel Cara-Fuentes
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
2
|
Chan H, Ni F, Zhao B, Jiang H, Ding J, Wang L, Wang X, Cui J, Feng S, Gao X, Yang X, Chi H, Lee H, Chen X, Li X, Jiao J, Wu D, Zhang G, Wang M, Cun Y, Ruan X, Yang H, Li Q. A genomic association study revealing subphenotypes of childhood steroid-sensitive nephrotic syndrome in a larger genomic sequencing cohort. Genes Dis 2024; 11:101126. [PMID: 38560502 PMCID: PMC10978544 DOI: 10.1016/j.gendis.2023.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 04/04/2024] Open
Abstract
Dissecting the genetic components that contribute to the two main subphenotypes of steroid-sensitive nephrotic syndrome (SSNS) using genome-wide association studies (GWAS) strategy is important for understanding the disease. We conducted a multicenter cohort study (360 patients and 1835 controls) combined with a GWAS strategy to identify susceptibility variants associated with the following two subphenotypes of SSNS: steroid-sensitive nephrotic syndrome without relapse (SSNSWR, 181 patients) and steroid-dependent/frequent relapse nephrotic syndrome (SDNS/FRNS, 179 patients). The distribution of two single-nucleotide polymorphisms (SNPs) in ANKRD36 and ALPG was significant between SSNSWR and healthy controls, and that of two SNPs in GAD1 and HLA-DQA1 was significant between SDNS/FRNS and healthy controls. Interestingly, rs1047989 in HLA-DQA1 was a candidate locus for SDNS/FRNS but not for SSNSWR. No significant SNPs were observed between SSNSWR and SDNS/FRNS. Meanwhile, chromosome 2:171713702 in GAD1 was associated with a greater steroid dose (>0.75 mg/kg/d) upon relapse to first remission in patients with SDNS/FRNS (odds ratio = 3.14; 95% confidence interval, 0.97-9.87; P = 0.034). rs117014418 in APOL4 was significantly associated with a decrease in eGFR of greater than 20% compared with the baseline in SDNS/FRNS patients (P = 0.0001). Protein-protein intersection network construction suggested that HLA-DQA1 and HLA-DQB1 function together through GSDMA. Thus, SSNSWR belongs to non-HLA region-dependent nephropathy, and the HLA-DQA/DQB region is likely strongly associated with disease relapse, especially in SDNS/FRNS. The study provides a novel approach for the GWAS strategy of SSNS and contributes to our understanding of the pathological mechanisms of SSNSWR and SDNS/FRNS.
Collapse
Affiliation(s)
- Han Chan
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Fenfen Ni
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, China
| | - Bo Zhao
- Department of Nephrology, Kunming Children's Hospital, Kunming Medical University, Kunming, Yunnan 650228, China
| | - Huimin Jiang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Juanjuan Ding
- Department of Nephrology, Wuhan Children's Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430015, China
| | - Li Wang
- Department of Nephrology, Chengdu Women and Children Central Hospital, Chengdu, Sichuan 610073, China
| | - Xiaowen Wang
- Department of Nephrology, Wuhan Children's Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430015, China
| | - Jingjing Cui
- Department of Nephrology, Kunming Children's Hospital, Kunming Medical University, Kunming, Yunnan 650228, China
| | - Shipin Feng
- Department of Nephrology, Chengdu Women and Children Central Hospital, Chengdu, Sichuan 610073, China
| | - Xiaojie Gao
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, China
| | - Xueying Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Huan Chi
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Hao Lee
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xuelan Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaoqin Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jia Jiao
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Daoqi Wu
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Gaofu Zhang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Mo Wang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yupeng Cun
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiongzhong Ruan
- Department of Nephrology, John Moorhead Research Laboratory, University College London Medical School, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | - Haiping Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Qiu Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
3
|
Vivarelli M, Gibson K, Sinha A, Boyer O. Childhood nephrotic syndrome. Lancet 2023; 402:809-824. [PMID: 37659779 DOI: 10.1016/s0140-6736(23)01051-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 09/04/2023]
Abstract
Idiopathic nephrotic syndrome is the most common glomerular disease in children. Corticosteroids are the cornerstone of its treatment, and steroid response is the main prognostic factor. Most children respond to a cycle of oral steroids, and are defined as having steroid-sensitive nephrotic syndrome. Among the children who do not respond, defined as having steroid-resistant nephrotic syndrome, most respond to second-line immunosuppression, mainly with calcineurin inhibitors, and children in whom a response is not observed are described as multidrug resistant. The pathophysiology of nephrotic syndrome remains elusive. In cases of immune-mediated origin, dysregulation of immune cells and production of circulating factors that damage the glomerular filtration barrier have been described. Conversely, up to a third of cases of steroid-resistant nephrotic syndrome have a monogenic origin. Multidrug resistant nephrotic syndrome often leads to kidney failure and can cause relapse after kidney transplant. Although steroid-sensitive nephrotic syndrome does not affect renal function, most children with steroid-sensitive nephrotic syndrome have a relapsing course that requires repeated steroid cycles with significant side-effects. To minimise morbidity, some patients require steroid-sparing immunosuppressive agents, including levamisole, mycophenolate mofetil, calcineurin inhibitors, anti-CD20 monoclonal antibodies, and cyclophosphamide. Close monitoring and preventive measures are warranted at onset and during relapse to prevent acute complications (eg, hypovolaemia, acute kidney injury, infections, and thrombosis), whereas long-term management requires minimising treatment-related side-effects. A subset of patients have active disease into adulthood.
Collapse
Affiliation(s)
- Marina Vivarelli
- Division of Nephrology, Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - Keisha Gibson
- Division of Nephrology and Hypertension, University of North Carolina Kidney Center, University of North Carolina at Chapel Hill, NC, USA
| | - Aditi Sinha
- Division of Nephrology, Indian Council of Medical Research Center for Advanced Research in Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Olivia Boyer
- Néphrologie Pédiatrique, Centre de Référence Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Hôpital Necker - Enfants Malades, Assistance Publique Hôpitaux de Paris, Inserm U1163, Institut Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Downie ML, Gupta S, Voinescu C, Levine AP, Sadeghi-Alavijeh O, Dufek-Kamperis S, Cao J, Christian M, Kari JA, Thalgahagoda S, Ranawaka R, Abeyagunawardena A, Gbadegesin R, Parekh R, Kleta R, Bockenhauer D, Stanescu HC, Gale DP. Common Risk Variants in AHI1 Are Associated With Childhood Steroid Sensitive Nephrotic Syndrome. Kidney Int Rep 2023; 8:1562-1574. [PMID: 37547536 PMCID: PMC10403666 DOI: 10.1016/j.ekir.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Steroid-sensitive nephrotic syndrome (SSNS) is the most common form of kidney disease in children worldwide. Genome-wide association studies (GWAS) have demonstrated the association of SSNS with genetic variation at HLA-DQ/DR and have identified several non-HLA loci that aid in further understanding of disease pathophysiology. We sought to identify additional genetic loci associated with SSNS in children of Sri Lankan and European ancestry. Methods We conducted a GWAS in a cohort of Sri Lankan individuals comprising 420 pediatric patients with SSNS and 2339 genetic ancestry matched controls obtained from the UK Biobank. We then performed a transethnic meta-analysis with a previously reported European cohort of 422 pediatric patients and 5642 controls. Results Our GWAS confirmed the previously reported association of SSNS with HLA-DR/DQ (rs9271602, P = 1.12 × 10-27, odds ratio [OR] = 2.75). Transethnic meta-analysis replicated these findings and identified a novel association at AHI1 (rs2746432, P = 2.79 × 10-8, OR = 1.37), which was also replicated in an independent South Asian cohort. AHI1 is implicated in ciliary protein transport and immune dysregulation, with rare variation in this gene contributing to Joubert syndrome type 3. Conclusions Common variation in AHI1 confers risk of the development of SSNS in both Sri Lankan and European populations. The association with common variation in AHI1 further supports the role of immune dysregulation in the pathogenesis of SSNS and demonstrates that variation across the allele frequency spectrum in a gene can contribute to disparate monogenic and polygenic diseases.
Collapse
Affiliation(s)
- Mallory L. Downie
- Department of Renal Medicine, University College London, London, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sanjana Gupta
- Department of Renal Medicine, University College London, London, UK
| | - Catalin Voinescu
- Department of Renal Medicine, University College London, London, UK
| | - Adam P. Levine
- Department of Pathology, University College London, London, UK
| | | | | | - Jingjing Cao
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | | | - Jameela A. Kari
- Pediatric Nephrology Centre of Excellence, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Randula Ranawaka
- Department of Pediatrics, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Rasheed Gbadegesin
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rulan Parekh
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
- Department of Medicine, Women’s College Hospital, Toronto, Canada
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
5
|
Hu L, Lin L, Huang G, Xie Y, Peng Z, Liu F, Bai G, Li W, Gao L, Wang Y, Li Q, Fu H, Wang J, Sun Q, Mao J. Metabolomic profiles in serum and urine uncover novel biomarkers in children with nephrotic syndrome. Eur J Clin Invest 2023; 53:e13978. [PMID: 36856027 DOI: 10.1111/eci.13978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Nephrotic syndrome is common in children and adults worldwide, and steroid-sensitive nephrotic syndrome (SSNS) accounts for 80%. Aberrant metabolism involvement in early SSNS is sparsely studied, and its pathogenesis remains unclear. Therefore, the goal of this study was to investigate the changes in initiated SSNS patients-related metabolites through serum and urine metabolomics and discover the novel potential metabolites and metabolic pathways. METHODS Serum samples (27 SSNS and 56 controls) and urine samples (17 SSNS and 24 controls) were collected. Meanwhile, the non-targeted analyses were performed by ultra-high-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS) to determine the changes in SSNS. We applied the causal inference model, the DoWhy model, to assess the causal effects of several selected metabolites. An ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to validate hits (D-mannitol, dulcitol, D-sorbitol, XMP, NADPH, NAD, bilirubin, and α-KG-like) in 41 SSNS and 43 controls. In addition, the metabolic pathways were explored. RESULTS Compared to urine, the metabolism analysis of serum samples was more clearly discriminated at SSNS. 194 differential serum metabolites and five metabolic pathways were obtained in the SSNS group. Eight differential metabolites were identified by establishing the diagnostic model for SSNS, and four variables had a positive causal effect. After validation by targeted MS, except XMP, others have similar trends like the untargeted metabolic analysis. CONCLUSION With untargeted metabolomics analysis and further targeted quantitative analysis, we found seven metabolites may be new biomarkers for risk prediction and early diagnosis for SSNS.
Collapse
Affiliation(s)
- Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Li Lin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guoping Huang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yi Xie
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhaoyang Peng
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guannan Bai
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiuyu Li
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qingnan Sun
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
6
|
Downie ML, Gupta S, Chan MMY, Sadeghi-Alavijeh O, Cao J, Parekh RS, Diz CB, Bierzynska A, Levine AP, Pepper RJ, Stanescu H, Saleem MA, Kleta R, Bockenhauer D, Koziell AB, Gale DP. Shared genetic risk across different presentations of gene test-negative idiopathic nephrotic syndrome. Pediatr Nephrol 2023; 38:1793-1800. [PMID: 36357634 PMCID: PMC10154254 DOI: 10.1007/s00467-022-05789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Idiop athic nephrotic syndrome (INS) is classified in children according to response to initial corticosteroid therapy into steroid-sensitive (SSNS) and steroid-resistant nephrotic syndrome (SRNS), and in adults according to histology into minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). However, there is well-recognised phenotypic overlap between these entities. Genome-wide association studies (GWAS) have shown a strong association between SSNS and variation at HLA, suggesting an underlying immunological basis. We sought to determine whether a risk score generated from genetic variants associated with SSNS could be used to gain insight into the pathophysiology of INS presenting in other ways. METHODS We developed an SSNS genetic risk score (SSNS-GRS) from the five variants independently associated with childhood SSNS in a previous European GWAS. We quantified SSNS-GRS in independent cohorts of European individuals with childhood SSNS, non-monogenic SRNS, MCD, and FSGS, and contrasted them with SSNS-GRS quantified in individuals with monogenic SRNS, membranous nephropathy (a different immune-mediated disease-causing nephrotic syndrome), and healthy controls. RESULTS The SSNS-GRS was significantly elevated in cohorts with SSNS, non-monogenic SRNS, MCD, and FSGS compared to healthy participants and those with membranous nephropathy. The SSNS-GRS in all cohorts with non-monogenic INS were also significantly elevated compared to those with monogenic SRNS. CONCLUSIONS The shared genetic risk factors among patients with different presentations of INS strongly suggests a shared autoimmune pathogenesis when monogenic causes are excluded. Use of the SSNS-GRS, in addition to testing for monogenic causes, may help to classify patients presenting with INS. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Mallory L Downie
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sanjana Gupta
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Melanie M Y Chan
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Omid Sadeghi-Alavijeh
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Jingjing Cao
- Department of Medicine, Women's College Hospital, Toronto, Canada
| | - Rulan S Parekh
- Department of Medicine, Women's College Hospital, Toronto, Canada
- Department of Pediatrics, Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
| | - Carmen Bugarin Diz
- Department of Paediatric Nephrology, Evelina London and Faculty of Life Sciences, King's College London, London, UK
| | - Agnieszka Bierzynska
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Adam P Levine
- Research Department of Pathology, University College London, London, UK
| | - Ruth J Pepper
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Horia Stanescu
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Moin A Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ania B Koziell
- Department of Paediatric Nephrology, Evelina London and Faculty of Life Sciences, King's College London, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, 1st Floor, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
7
|
Therapeutic trials in difficult to treat steroid sensitive nephrotic syndrome: challenges and future directions. Pediatr Nephrol 2023; 38:17-34. [PMID: 35482099 PMCID: PMC9048617 DOI: 10.1007/s00467-022-05520-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023]
Abstract
Steroid sensitive nephrotic syndrome is a common condition in pediatric nephrology, and most children have excellent outcomes. Yet, 50% of children will require steroid-sparing agents due to frequently relapsing disease and may suffer consequences from steroid dependence or use of steroid-sparing agents. Several steroid-sparing therapeutic agents are available with few high quality randomized controlled trials to compare efficacy leading to reliance on observational data for clinical guidance. Reported trials focus on short-term outcomes such as time to first relapse, relapse rates up to 1-2 years of follow-up, and few have studied long-term remission. Trial designs often do not consider inter-individual variability, and differing response to treatments may occur due to heterogeneity in pathogenic mechanisms, and genetic and environmental influences. Strategies are proposed to improve the quantity and quality of trials in steroid sensitive nephrotic syndrome with integration of biomarkers, novel trial designs, and standardized outcomes, especially for long-term remission. Collaborative efforts among international trial networks will help move us toward a shared goal of finding a cure for children with nephrotic syndrome.
Collapse
|
8
|
Colucci M, Oniszczuk J, Vivarelli M, Audard V. B-Cell Dysregulation in Idiopathic Nephrotic Syndrome: What We Know and What We Need to Discover. Front Immunol 2022; 13:823204. [PMID: 35140723 PMCID: PMC8819007 DOI: 10.3389/fimmu.2022.823204] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
The therapeutic efficacy of B-cell depletion by anti-CD20 treatment in pediatric and, more recently, in adult idiopathic nephrotic syndrome patients suggests a key role of B cells in the pathogenesis of the disease. However, their exact role is still unclear. B cells are able to secrete a large variety of antibodies that can protect against infections. However, B-cell dysregulation is well-established in a variety of autoimmune diseases. In parallel with their ability to produce antibodies, pathogenic B cells display altered effector functions by expressing activating surface molecules, which can strongly modify the immune homeostasis, or by producing specific cytokines, which can directly affect either podocyte structure and functions or modulate T-cell homeostasis. Herein, we report the most relevant clinical and experimental evidences of a pathogenic role of B cells in idiopathic nephrotic syndrome. We further highlight similarities and differences between children and adults affected by non-genetic forms of the disease and discuss what needs to be investigated in order to define the exact mechanisms underlying the pathogenic role of B cells and to identify more tailored therapeutic approaches.
Collapse
Affiliation(s)
- Manuela Colucci
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Manuela Colucci,
| | - Julie Oniszczuk
- Assistance Publique des Hôpitaux de Paris, Hôpitaux Universitaires Henri-Mondor, Service de Néphrologie et Transplantation, Centre de Référence Maladie Rare “Syndrome Néphrotique Idiopathique”, Fédération Hospitalo-Universitaire, Innovative Therapy for Immune Disorders, Créteil, France
- Univ Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Marina Vivarelli
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincent Audard
- Assistance Publique des Hôpitaux de Paris, Hôpitaux Universitaires Henri-Mondor, Service de Néphrologie et Transplantation, Centre de Référence Maladie Rare “Syndrome Néphrotique Idiopathique”, Fédération Hospitalo-Universitaire, Innovative Therapy for Immune Disorders, Créteil, France
- Univ Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
9
|
Horinouchi T, Nozu K, Iijima K. An updated view of the pathogenesis of steroid-sensitive nephrotic syndrome. Pediatr Nephrol 2022; 37:1957-1965. [PMID: 35006356 PMCID: PMC9307535 DOI: 10.1007/s00467-021-05401-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Idiopathic nephrotic syndrome is the most common childhood glomerular disease. Most forms of this syndrome respond to corticosteroids at standard doses and are, therefore, defined as steroid-sensitive nephrotic syndrome (SSNS). Immunological mechanisms and subsequent podocyte disorders play a pivotal role in SSNS and have been studied for years; however, the precise pathogenesis remains unclear. With recent advances in genetic techniques, an exhaustive hypothesis-free approach called a genome-wide association study (GWAS) has been conducted in various populations. GWASs in pediatric SSNS peaked in the human leukocyte antigen class II region in various populations. Additionally, an association of immune-related CALHM6/FAM26F, PARM1, BTNL2, and TNFSF15 genes, as well as NPHS1, which encodes nephrin expressed in podocytes, has been identified as a locus that achieves genome-wide significance in pediatric SSNS. However, the specific mechanism of SSNS development requires elucidation. This review describes an updated view of SSNS pathogenesis from immunological and genetic aspects, including interactions with infections or allergies, production of circulating factors, and an autoantibody hypothesis.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- grid.31432.370000 0001 1092 3077Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- grid.31432.370000 0001 1092 3077Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan. .,Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Minatojimaminami-machi 1-6-7, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|