1
|
Bernabe CS, Caliman IF, de Abreu ARR, Molosh AI, Truitt WA, Shekhar A, Johnson PL. Identification of a novel perifornical-hypothalamic-area-projecting serotonergic system that inhibits innate panic and conditioned fear responses. Transl Psychiatry 2024; 14:60. [PMID: 38272876 PMCID: PMC10811332 DOI: 10.1038/s41398-024-02769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
The serotonin (5-HT) system is heavily implicated in the regulation of anxiety and trauma-related disorders such as panic disorder and post-traumatic stress disorder, respectively. However, the neural mechanisms of how serotonergic neurotransmission regulates innate panic and fear brain networks are poorly understood. Our earlier studies have identified that orexin (OX)/glutamate neurons within the perifornical hypothalamic area (PFA) play a critical role in adaptive and pathological panic and fear. While site-specific and electrophysiological studies have shown that intracranial injection and bath application of 5-HT inhibits PFA neurons via 5-HT1a receptors, they largely ignore circuit-specific neurotransmission and its physiological properties that occur in vivo. Here, we investigate the role of raphe nuclei 5-HT inputs into the PFA in panic and fear behaviors. We initially confirmed that photostimulation of glutamatergic neurons in the PFA of rats produces robust cardioexcitation and flight/aversive behaviors resembling panic-like responses. Using the retrograde tracer cholera toxin B, we determined that the PFA receives discrete innervation of serotonergic neurons clustered in the lateral wings of the dorsal (lwDRN) and in the median (MRN) raphe nuclei. Selective lesions of these serotonergic projections with saporin toxin resulted in similar panic-like responses during the suffocation-related CO2 challenge and increased freezing to fear-conditioning paradigm. Conversely, selective stimulation of serotonergic fibers in the PFA attenuated both flight/escape behaviors and cardioexcitation responses elicited by the CO2 challenge and induced conditioned place preference. The data here support the hypothesis that PFA projecting 5-HT neurons in the lwDRN/MRN represents a panic/fear-off circuit and may also play a role in reward behavior.
Collapse
Affiliation(s)
- Cristian S Bernabe
- Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Izabela F Caliman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aline R R de Abreu
- Departamento de Alimentos, Escola de Nutrição da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Andrei I Molosh
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William A Truitt
- Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Anantha Shekhar
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip L Johnson
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
2
|
Pant A, Farrokhi F, Krause K, Marsans M, Roberts J. Ten-Year Durability of Hypothalamic Deep Brain Stimulation in Treatment of Chronic Cluster Headaches: A Case Report and Literature Review. Cureus 2023; 15:e47338. [PMID: 38021829 PMCID: PMC10657219 DOI: 10.7759/cureus.47338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic cluster headache (CCH) is a debilitating primary headache that causes excruciating pain without remission. Various medical and surgical treatments have been implemented over the years, yet many provide only short-term relief. Deep brain stimulation (DBS) is an emerging treatment alternative that has been shown to dramatically reduce the intensity and frequency of headache attacks. However, reports of greater than 10-year outcomes after DBS for CCH are scant. Here, we report the durability of DBS in the posterior inferior hypothalamus after 10 years on a patient with CCH. Our patient experienced an 82% decrease in the frequency of headaches after DBS, which was maintained for over 10 years. The side effects observed included depression, irritability, anxiety, and dizziness, which were alleviated by changing programming settings. In the context of current literature, DBS shows promise for long-term relief of cluster headaches when other treatments fail.
Collapse
Affiliation(s)
- Aaradhya Pant
- Neurosurgery, Virginia Mason Medical Center, Seattle, USA
| | - Farrokh Farrokhi
- Neurological Surgery, Virginia Mason Medical Center, Seattle, USA
| | - Katie Krause
- Neurological Surgery, Virginia Mason Medical Center, Seattle, USA
| | - Maria Marsans
- Neurological Surgery, Virginia Mason Medical Center, Seattle, USA
| | - John Roberts
- Neurology, Virginia Mason Medical Center, Seattle, USA
| |
Collapse
|
3
|
Bertram T, Hoffmann Ayala D, Huber M, Brandl F, Starke G, Sorg C, Mulej Bratec S. Human threat circuits: Threats of pain, aggressive conspecific, and predator elicit distinct BOLD activations in the amygdala and hypothalamus. Front Psychiatry 2023; 13:1063238. [PMID: 36733415 PMCID: PMC9887727 DOI: 10.3389/fpsyt.2022.1063238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Threat processing, enabled by threat circuits, is supported by a remarkably conserved neural architecture across mammals. Threatening stimuli relevant for most species include the threat of being attacked by a predator or an aggressive conspecific and the threat of pain. Extensive studies in rodents have associated the threats of pain, predator attack and aggressive conspecific attack with distinct neural circuits in subregions of the amygdala, the hypothalamus and the periaqueductal gray. Bearing in mind the considerable conservation of both the anatomy of these regions and defensive behaviors across mammalian species, we hypothesized that distinct brain activity corresponding to the threats of pain, predator attack and aggressive conspecific attack would also exist in human subcortical brain regions. Methods Forty healthy female subjects underwent fMRI scanning during aversive classical conditioning. In close analogy to rodent studies, threat stimuli consisted of painful electric shocks, a short video clip of an attacking bear and a short video clip of an attacking man. Threat processing was conceptualized as the expectation of the aversive stimulus during the presentation of the conditioned stimulus. Results Our results demonstrate differential brain activations in the left and right amygdala as well as in the left hypothalamus for the threats of pain, predator attack and aggressive conspecific attack, for the first time showing distinct threat-related brain activity within the human subcortical brain. Specifically, the threat of pain showed an increase of activity in the left and right amygdala and the left hypothalamus compared to the threat of conspecific attack (pain > conspecific), and increased activity in the left amygdala compared to the threat of predator attack (pain > predator). Threat of conspecific attack revealed heightened activity in the right amygdala, both in comparison to threat of pain (conspecific > pain) and threat of predator attack (conspecific > predator). Finally, for the condition threat of predator attack we found increased activity in the bilateral amygdala and the hypothalamus when compared to threat of conspecific attack (predator > conspecific). No significant clusters were found for the contrast predator attack > pain. Conclusion Results suggest that threat type-specific circuits identified in rodents might be conserved in the human brain.
Collapse
Affiliation(s)
- Teresa Bertram
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Hoffmann Ayala
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, Klinikum Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Maria Huber
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georg Starke
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christian Sorg
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Satja Mulej Bratec
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychology, Faculty of Arts, University of Maribor, Maribor, Slovenia
| |
Collapse
|
4
|
Forni M, Thorbergsson PT, Thelin J, Schouenborg J. 3D microelectrode cluster and stimulation paradigm yield powerful analgesia without noticeable adverse effects. SCIENCE ADVANCES 2021; 7:eabj2847. [PMID: 34623922 PMCID: PMC8500508 DOI: 10.1126/sciadv.abj2847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The lack of satisfactory treatment for persistent pain profoundly impairs the quality of life for many patients. Stimulation of brainstem pain control systems can trigger powerful analgesia, but their complex network organization frequently prevents separation of analgesia from side effects. To overcome this long-standing challenge, we developed a biocompatible gelatin-embedded cluster of ultrathin microelectrodes that enables fine-tuned, high-definition three-dimensional stimulation in periaqueductal gray/dorsal raphe nucleus in awake rats. Analgesia was assessed from both motor reactions and intracortical signals, corresponding to pain-related signals in humans. We could select an individual-specific subset of microelectrodes in each animal that reliably provided strong pain inhibition during normal and hyperalgesia conditions, without noticeable behavioral side effects. Gait, spontaneous cortical activity at rest, and cortical tactile responses were minimally affected, indicating a highly selective action. In conclusion, our developed biocompatible microelectrode cluster and stimulation paradigm reliably enabled powerful, fine-tuned, and selective analgesia without noticeable side effects.
Collapse
Affiliation(s)
- Matilde Forni
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Medicon Village, Scheelevägen 2, Lund, 223 81, Sweden
| | - Palmi Thor Thorbergsson
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Medicon Village, Scheelevägen 2, Lund, 223 81, Sweden
| | - Jonas Thelin
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Medicon Village, Scheelevägen 2, Lund, 223 81, Sweden
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Medicon Village, Scheelevägen 2, Lund, 223 81, Sweden
- NanoLund, Center for Nanoscience, Lund University, Professorsgatan 1, Lund 223 63, Sweden
| |
Collapse
|
5
|
Molosh AI, Dustrude ET, Lukkes JL, Fitz SD, Caliman IF, Abreu ARR, Dietrich AD, Truitt WA, Ver Donck L, Ceusters M, Kent JM, Johnson PL, Shekhar A. Panic results in unique molecular and network changes in the amygdala that facilitate fear responses. Mol Psychiatry 2020; 25:442-460. [PMID: 30108314 PMCID: PMC6410355 DOI: 10.1038/s41380-018-0119-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/03/2018] [Accepted: 05/25/2018] [Indexed: 11/12/2022]
Abstract
Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal gray, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2-positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients.
Collapse
Affiliation(s)
- A I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Paul and Carol Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E T Dustrude
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J L Lukkes
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - I F Caliman
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A R R Abreu
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A D Dietrich
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - W A Truitt
- Paul and Carol Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Ver Donck
- Janssen Research & Development, Beerse, Belgium
| | - M Ceusters
- Janssen Research & Development, Beerse, Belgium
| | - J M Kent
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | - P L Johnson
- Paul and Carol Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Paul and Carol Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Elias GJB, Giacobbe P, Boutet A, Germann J, Beyn ME, Gramer RM, Pancholi A, Joel SE, Lozano AM. Probing the circuitry of panic with deep brain stimulation: Connectomic analysis and review of the literature. Brain Stimul 2019; 13:10-14. [PMID: 31582301 DOI: 10.1016/j.brs.2019.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/17/2019] [Accepted: 09/21/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Panic attacks affect a sizeable proportion of the population. The neurocircuitry of panic remains incompletely understood. OBJECTIVE To investigate the neuroanatomical underpinnings of panic attacks induced by deep brain stimulation (DBS) through (1) connectomic analysis of an obsessive-compulsive disorder patient who experienced panic attacks during inferior thalamic peduncle DBS; (2) appraisal of existing clinical reports on DBS-induced panic attacks. METHODS Panicogenic, ventral contact stimulation was compared with benign stimulation at other contacts using volume of tissue activated (VTA) modelling. Networks associated with the panicogenic zone were investigated using state-of-the-art normative connectivity mapping. In addition, a literature search for prior reports of DBS-induced panic attacks was conducted. RESULTS Panicogenic VTAs impinged primarily on the tuberal hypothalamus. Compared to non-panicogenic VTAs, panicogenic loci were significantly functionally coupled to limbic and brainstem structures, including periaqueductal grey and amygdala. Previous studies found stimulation of these areas can also provoke panic attacks. CONCLUSIONS DBS in the region of the tuberal hypothalamus elicited panic attacks in a single obsessive-compulsive disorder patient and recruited a network of structures previously implicated in panic pathophysiology, reinforcing the importance of the hypothalamus as a hub of panicogenic circuitry.
Collapse
Affiliation(s)
- Gavin J B Elias
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Peter Giacobbe
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Michelle E Beyn
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Robert M Gramer
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Aditya Pancholi
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | | - Andres M Lozano
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Select panicogenic drugs and stimuli induce consistent increases in tail skin flushes and decreases in core body temperature. Behav Pharmacol 2018; 30:376-382. [PMID: 30480550 DOI: 10.1097/fbp.0000000000000440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Panic attacks (PAs) are episodes of intense fear or discomfort that are accompanied by a variety of both psychological and somatic symptoms. Panic induction in preclinical models (e.g. rats) has largely been assayed through flight and avoidance behavioral tests and cardiorespiratory activity. Yet, the literature pertaining to PAs shows that thermal sensations (hot flushes/heat sensations and chills) are also a common symptom during PAs in humans. Considering that temperature alterations are objectively measurable in rodents, we hypothesized that select panicogenic drugs and stimuli induce consistent changes in thermoregulation related to hot flushes and chills. Specifically, we challenged male rats with intraperitoneal injections of the GABAergic inverse agonist FG-7142; the α2 adrenoceptor antagonist yohimbine; the serotonin agonist D-fenfluramine, and 20% CO2 (an interoceptive homeostatic challenge). We assayed core body temperature and tail skin temperature using implanted radiotelemetry probes and tail thermistors/thermal imaging camera, respectively, and found that all challenges elicited rapid, high-amplitude (~7-9°C) increase in tail skin temperature and delayed decreases (~1-3°C) in core body temperature. We propose that thermal sensations such as these may be an additional indicator of a panic response in rodents and humans, as these panicogenic compounds or stimuli are known to precipitate PAs in persons with panic disorder.
Collapse
|
8
|
Abreu AR, Molosh AI, Johnson PL, Shekhar A. Role of medial hypothalamic orexin system in panic, phobia and hypertension. Brain Res 2018; 1731:145942. [PMID: 30205108 DOI: 10.1016/j.brainres.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Orexin has been implicated in a number of physiological functions, including arousal, regulation of sleep, energy metabolism, appetitive behaviors, stress, anxiety, fear, panic, and cardiovascular control. In this review, we will highlight research focused on orexin system in the medial hypothalamic regions of perifornical (PeF) and dorsomedial hypothalamus (DMH), and describe the role of this hypothalamic neuropeptide in the behavioral expression of panic and consequent fear and avoidance responses, as well as sympathetic regulation and possible development of chronic hypertension. We will also outline recent data highlighting the clinical potential of single and dual orexin receptor antagonists for neuropsychiatric conditions including panic, phobia, and cardiovascular conditions, such as in hypertension.
Collapse
Affiliation(s)
- Aline R Abreu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philip L Johnson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Barbosa DAN, de Oliveira-Souza R, Monte Santo F, de Oliveira Faria AC, Gorgulho AA, De Salles AAF. The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurg Focus 2017; 43:E15. [DOI: 10.3171/2017.6.focus17256] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neurosurgical endeavor to treat psychiatric patients may have been part of human history since its beginning. The modern era of psychosurgery can be traced to the heroic attempts of Gottlieb Burckhardt and Egas Moniz to alleviate mental symptoms through the ablation of restricted areas of the frontal lobes in patients with disabling psychiatric illnesses. Thanks to the adaptation of the stereotactic frame to human patients, the ablation of large volumes of brain tissue has been practically abandoned in favor of controlled interventions with discrete targets.Consonant with the role of the hypothalamus in the mediation of the most fundamental approach-avoidance behaviors, some hypothalamic nuclei and regions, in particular, have been selected as targets for the treatment of aggressiveness (posterior hypothalamus), pathological obesity (lateral or ventromedial nuclei), sexual deviations (ventromedial nucleus), and drug dependence (ventromedial nucleus). Some recent improvements in outcomes may have been due to the use of stereotactically guided deep brain stimulation and the change of therapeutic focus from categorical diagnoses (such as schizophrenia) to dimensional symptoms (such as aggressiveness), which are nonspecific in terms of formal diagnosis. However, agreement has never been reached on 2 related issues: 1) the choice of target, based on individual diagnoses; and 2) reliable prediction of outcomes related to individual targets. Despite the lingering controversies on such critical aspects, the experience of the past decades should pave the way for advances in the field. The current failure of pharmacological treatments in a considerable proportion of patients with chronic disabling mental disorders is reminiscent of the state of affairs that prevailed in the years before the early psychosurgical attempts.This article reviews the functional organization of the hypothalamus, the effects of ablation and stimulation of discrete hypothalamic regions, and the stereotactic targets that have most often been used in the treatment of psychopathological and behavioral symptoms; finally, the implications of current and past experience are presented from the perspective of how this fund of knowledge may usefully contribute to the future of hypothalamic psychosurgery.
Collapse
Affiliation(s)
- Daniel A. N. Barbosa
- 1Department of Clinical Neuroscience, D’Or Institute for Research and Education
- 2Division of Neurosurgery and
| | - Ricardo de Oliveira-Souza
- 1Department of Clinical Neuroscience, D’Or Institute for Research and Education
- 3Department of Neurology and Psychiatry, Gaffrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro
| | - Felipe Monte Santo
- 1Department of Clinical Neuroscience, D’Or Institute for Research and Education
- 4Intensive Care Unit, Icaraí Hospital, Niteroi, RJ
| | - Ana Carolina de Oliveira Faria
- 1Department of Clinical Neuroscience, D’Or Institute for Research and Education
- 3Department of Neurology and Psychiatry, Gaffrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro
| | - Alessandra A. Gorgulho
- 5HCor Neuroscience, São Paulo, Brazil; and
- 6Department of Neurosurgery and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Antonio A. F. De Salles
- 5HCor Neuroscience, São Paulo, Brazil; and
- 6Department of Neurosurgery and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
10
|
Bonaventure P, Dugovic C, Shireman B, Preville C, Yun S, Lord B, Nepomuceno D, Wennerholm M, Lovenberg T, Carruthers N, Fitz SD, Shekhar A, Johnson PL. Evaluation of JNJ-54717793 a Novel Brain Penetrant Selective Orexin 1 Receptor Antagonist in Two Rat Models of Panic Attack Provocation. Front Pharmacol 2017; 8:357. [PMID: 28649201 PMCID: PMC5465257 DOI: 10.3389/fphar.2017.00357] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Orexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R) in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion. Here we report on a novel brain penetrant, selective and high affinity OX1R antagonist JNJ-54717793 (1S,2R,4R)-7-([(3-fluoro-2-pyrimidin-2-ylphenyl)carbonyl]-N-[5-(trifluoromethyl)pyrazin-2-yl]-7-azabicyclo[2.2.1]heptan-2-amine). JNJ-54717793 is a high affinity/potent OX1R antagonist and has an excellent selectivity profile including 50 fold versus the OX2R. Ex vivo receptor binding studies demonstrated that after oral administration JNJ-54717793 crossed the blood brain barrier and occupied OX1Rs in the rat brain. While JNJ-54717793 had minimal effect on spontaneous sleep in rats and in wild-type mice, its administration in OX2R knockout mice, selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. JNJ-54717793 attenuated CO2 and sodium lactate induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. These data confirm that selective OX1R antagonism may represent a novel approach of treating anxiety disorders, with no apparent sedative effects.
Collapse
Affiliation(s)
| | | | - Brock Shireman
- Janssen Research & Development, LLC, San DiegoCA, United States
| | - Cathy Preville
- Janssen Research & Development, LLC, San DiegoCA, United States
| | - Sujin Yun
- Janssen Research & Development, LLC, San DiegoCA, United States
| | - Brian Lord
- Janssen Research & Development, LLC, San DiegoCA, United States
| | | | | | | | | | - Stephanie D. Fitz
- Department of Psychiatry, Indiana University School of Medicine, IndianapolisIN, United States
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, IndianapolisIN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, IndianapolisIN, United States
| | - Philip L. Johnson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, IndianapolisIN, United States
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IndianapolisIN, United States
| |
Collapse
|
11
|
Unravelling cortico-hypothalamic pathways regulating unconditioned fear-induced antinociception and defensive behaviours. Neuropharmacology 2016; 113:367-385. [PMID: 27717879 DOI: 10.1016/j.neuropharm.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 12/30/2022]
Abstract
The medial prefrontal cortex can influence unconditioned fear-induced defensive mechanisms organised by diencephalic neurons that are under tonic GABAergic inhibition. The posterior hypothalamus (PH) is involved with anxiety- and panic attack-like responses. To understand this cortical mediation, our study characterised anterior cingulate cortex (ACC)-PH pathways and investigated the effect of ACC local inactivation with lidocaine. We also investigated the involvement of PH ionotropic glutamate receptors in the defensive behaviours and fear-induced antinociception by microinjecting NBQX (an AMPA/kainate receptor antagonist) and LY235959 (a NMDA receptor antagonist) into the PH. ACC pretreatment with lidocaine decreased the proaversive effect and antinociception evoked by GABAA receptor blockade in the PH, which suggests that there may be descending excitatory pathways from this cortical region to the PH. Microinjections of both NBQX and LY235959 into the PH also attenuated defensive and antinociceptive responses. This suggests that the blockade of AMPA/kainate and NMDA receptors reduces the activity of glutamatergic efferent pathways. Both inputs from the ACC to the PH and glutamatergic hypothalamic short links disinhibited by intra-hypothalamic GABAA receptors blockade are potentially implicated. Microinjection of a bidirectional neurotracer in the PH showed a Cg1-PH pathway and PH neuronal reciprocal connections with the periaqueductal grey matter. Microinjections of an antegrade neurotracer into the Cg1 showed axonal fibres and glutamatergic vesicle-immunoreactive terminal boutons surrounding both mediorostral-lateroposterior thalamic nucleus and PH neuronal perikarya. These data suggest a critical role played by ACC-PH glutamatergic pathways and AMPA/kainate and NMDA receptors in the panic attack-like reactions and antinociception organised by PH neurons.
Collapse
|
12
|
Biagioni AF, Anjos-Garcia TD, Ullah F, Fisher IR, Falconi-Sobrinho LL, Freitas RLD, Felippotti TT, Coimbra NC. Neuroethological validation of an experimental apparatus to evaluate oriented and non-oriented escape behaviours: Comparison between the polygonal arena with a burrow and the circular enclosure of an open-field test. Behav Brain Res 2016; 298:65-77. [DOI: 10.1016/j.bbr.2015.10.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 12/26/2022]
|
13
|
Johnson PL, Federici LM, Fitz SD, Renger JJ, Shireman B, Winrow CJ, Bonaventure P, Shekhar A. OREXIN 1 AND 2 RECEPTOR INVOLVEMENT IN CO2 -INDUCED PANIC-ASSOCIATED BEHAVIOR AND AUTONOMIC RESPONSES. Depress Anxiety 2015; 32:671-83. [PMID: 26332431 PMCID: PMC4729192 DOI: 10.1002/da.22403] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The neuropeptides orexin A and B play a role in reward and feeding and are critical for arousal. However, it was not initially appreciated that most prepro-orexin synthesizing neurons are almost exclusively concentrated in the perifornical hypothalamus, which when stimulated elicits panic-associated behavior and cardiovascular responses in rodents and self-reported "panic attacks" and "fear of dying" in humans. More recent studies support a role for the orexin system in coordinating an integrative stress response. For instance, orexin neurons are highly reactive to anxiogenic stimuli, are hyperactive in anxiety pathology, and have strong projections to anxiety and panic-associated circuitry. Although the two cognate orexin receptors are colocalized in many brain regions, the orexin 2 receptor (OX2R) most robustly maps to the histaminergic wake-promoting region, while the orexin 1 receptor (OX1R) distribution is more exclusive and dense in anxiety and panic circuitry regions, such as the locus ceruleus. Overall, this suggests that OX1Rs play a critical role in mobilizing anxiety and panic responses. METHODS Here, we used a CO2 -panic provocation model to screen a dual OX1/2R antagonist (DORA-12) to globally inhibit orexin activity, then a highly selective OX1R antagonist (SORA1, Compound 56) or OX2R antagonist (SORA2, JnJ10397049) to assess OX1R and OX2R involvement. RESULTS All compounds except the SORA2 attenuated CO2 -induced anxiety-like behaviors, and all but the SORA2 and DORA attenuated CO2 -induced cardiovascular responses. CONCLUSIONS SORA1s may represent a novel method of treating anxiety disorders, with no apparent sedative effects that were present with a benzodiazepine.
Collapse
Affiliation(s)
- Philip L Johnson
- Departments of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Medical Neuroscience Program, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lauren M Federici
- Departments of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Medical Neuroscience Program, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephanie D Fitz
- Departments of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Brock Shireman
- Janssen Research and Development LLC, San Diego, California
| | | | | | - Anantha Shekhar
- Departments of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Medical Neuroscience Program, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
14
|
Johnson PL, Federici LM, Shekhar A. Etiology, triggers and neurochemical circuits associated with unexpected, expected, and laboratory-induced panic attacks. Neurosci Biobehav Rev 2014; 46 Pt 3:429-54. [PMID: 25130976 DOI: 10.1016/j.neubiorev.2014.07.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/24/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Panic disorder (PD) is a severe anxiety disorder that is characterized by recurrent panic attacks (PA), which can be unexpected (uPA, i.e., no clear identifiable trigger) or expected (ePA). Panic typically involves an abrupt feeling of catastrophic fear or distress accompanied by physiological symptoms such as palpitations, racing heart, thermal sensations, and sweating. Recurrent uPA and ePA can also lead to agoraphobia, where subjects with PD avoid situations that were associated with PA. Here we will review recent developments in our understanding of PD, which includes discussions on: symptoms and signs associated with uPA and ePAs; Diagnosis of PD and the new DSM-V; biological etiology such as heritability and gene×environment and gene×hormonal development interactions; comparisons between laboratory and naturally occurring uPAs and ePAs; neurochemical systems that are associated with clinical PAs (e.g. gene associations; targets for triggering or treating PAs), adaptive fear and panic response concepts in the context of new NIH RDoc approach; and finally strengths and weaknesses of translational animal models of adaptive and pathological panic states.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Lauren M Federici
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Messanvi F, Eggens-Meijer E, Roozendaal B, van der Want JJ. A discrete dopaminergic projection from the incertohypothalamic A13 cell group to the dorsolateral periaqueductal gray in rat. Front Neuroanat 2013; 7:41. [PMID: 24367297 PMCID: PMC3853869 DOI: 10.3389/fnana.2013.00041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 01/02/2023] Open
Abstract
Several findings have indicated an involvement of dopamine in panic and defensive behaviors. The dorsolateral column of the periaqueductal gray (dlPAG) is crucially involved in the expression of panic attacks in humans and defensive behaviors, also referred to as panic-like behaviors, in animals. Although the dlPAG is known to receive a specific innervation of dopaminergic fibers and abundantly expresses dopamine receptors, the origin of this dopaminergic input is largely unknown. This study aimed at mapping the dopaminergic projections to the dlPAG in order to provide further insight into the panic-like related behavior circuitry of the dlPAG. For this purpose, the retrograde tracer cholera toxin subunit b (CTb) was injected into the dlPAG of male Wistar rats and double immunofluorescence for CTb and tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of dopamine, was performed. Neurons labeled for both CTb and TH were counted in different dopaminergic cell groups. The findings indicate that the dopaminergic nerve terminals present in the dlPAG originate from multiple dopamine-containing cell groups in the hypothalamus and mesencephalon. Interestingly, the A13 cell group is the main source of dopaminergic afferents to the dlPAG and contains at least 45% of the total number of CTb/TH-positive neurons. Anterograde tracing with biotinylated dextran amine (BDA) combined with double immunofluorescence for BDA and TH confirmed the projections from the A13 cell group to the dlPAG. The remainder of the dopamine-positive terminals present in the dlPAG was found to originate from the extended A10 cell group and the A11 group. The A13 cell group is known to send dopaminergic efferents to several other brain regions implicated in defensive behavior, including the central amygdala and ventromedial hypothalamus. Therefore, although direct behavioral evidence is lacking, our finding that the A13 cell group is also the main source of dopaminergic input to the dlPAG suggests that dopamine might contribute to the regulation of dlPAG-mediated defensive behaviors.
Collapse
Affiliation(s)
- Fany Messanvi
- Department of Neuroscience, Section Anatomy, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Ellie Eggens-Meijer
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Johannes J van der Want
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology Trondheim, Norway
| |
Collapse
|
16
|
Rasskazoff SY, Slavin KV. Neuromodulation for cephalgias. Surg Neurol Int 2013; 4:S136-50. [PMID: 23682340 PMCID: PMC3654780 DOI: 10.4103/2152-7806.110662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/05/2013] [Indexed: 01/05/2023] Open
Abstract
Headaches (cephalgias) are a common reason for patients to seek medical care. There are groups of patients with recurrent headache and craniofacial pain presenting with malignant course of their disease that becomes refractory to pharmacotherapy and other medical management options. Neuromodulation can be a viable treatment modality for at least some of these patients. We review the available evidence related to the use of neuromodulation modalities for the treatment of medically refractory craniofacial pain of different nosology based on the International Classification of Headache Disorders, 2(nd) edition (ICHD-II) classification. This article also reviews the scientific rationale of neuromodulation application in management of cephalgias.
Collapse
|
17
|
An animal model of panic vulnerability with chronic disinhibition of the dorsomedial/perifornical hypothalamus. Physiol Behav 2012; 107:686-98. [PMID: 22484112 DOI: 10.1016/j.physbeh.2012.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 01/12/2023]
Abstract
Panic disorder (PD) is a severe anxiety disorder characterized by susceptibility to induction of panic attacks by subthreshold interoceptive stimuli such as sodium lactate infusions or hypercapnia induction. Here we review a model of panic vulnerability in rats involving chronic inhibition of GABAergic tone in the dorsomedial/perifornical hypothalamic (DMH/PeF) region that produces enhanced anxiety and freezing responses in fearful situations, as well as a vulnerability to displaying acute panic-like increases in cardioexcitation, respiration activity and "flight" associated behavior following subthreshold interoceptive stimuli that do not elicit panic responses in control rats. This model of panic vulnerability was developed over 15 years ago and has provided an excellent preclinical model with robust face, predictive and construct validity. The model recapitulates many of the phenotypic features of panic attacks associated with human panic disorder (face validity) including greater sensitivity to panicogenic stimuli demonstrated by sudden onset of anxiety and autonomic activation following an administration of a sub-threshold (i.e., do not usually induce panic in healthy subjects) stimulus such as sodium lactate, CO(2), or yohimbine. The construct validity is supported by several key findings; DMH/PeF neurons regulate behavioral and autonomic components of a normal adaptive panic response, as well as being implicated in eliciting panic-like responses in humans. Additionally, patients with PD have deficits in central GABA activity and pharmacological restoration of central GABA activity prevents panic attacks, consistent with this model. The model's predictive validity is demonstrated by not only showing panic responses to several panic-inducing agents that elicit panic in patients with PD, but also by the positive therapeutic responses to clinically used agents such as alprazolam and antidepressants that attenuate panic attacks in patients. More importantly, this model has been utilized to discover novel drugs such as group II metabotropic glutamate agonists and a new class of translocator protein enhancers of GABA, both of which subsequently showed anti-panic properties in clinical trials. All of these data suggest that this preparation provides a strong preclinical model of some forms of human panic disorders.
Collapse
|
18
|
Biagioni AF, Silva JA, Coimbra NC. Panic-like defensive behavior but not fear-induced antinociception is differently organized by dorsomedial and posterior hypothalamic nuclei of Rattus norvegicus (Rodentia, Muridae). Braz J Med Biol Res 2012; 45:328-36. [PMID: 22437484 PMCID: PMC3854165 DOI: 10.1590/s0100-879x2012007500037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA(A) antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA(A) receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA(A) receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.
Collapse
Affiliation(s)
- A F Biagioni
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | | | | |
Collapse
|
19
|
Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. PROGRESS IN BRAIN RESEARCH 2012; 198:133-61. [PMID: 22813973 DOI: 10.1016/b978-0-444-59489-1.00009-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A panic response is an adaptive response to deal with an imminent threat and consists of an integrated pattern of behavioral (aggression, fleeing, or freezing) and increased cardiorespiratory and endocrine responses that are highly conserved across vertebrate species. In the 1920s and 1940s, Philip Bard and Walter Hess, respectively, determined that the posterior regions of the hypothalamus are critical for a "fight-or-flight" reaction to deal with an imminent threat. Since the 1940s it was determined that the posterior hypothalamic panic area was located dorsal (perifornical hypothalamus: PeF) and dorsomedial (dorsomedial hypothalamus: DMH) to the fornix. This area is also critical for regulating circadian rhythms and in 1998, a novel wake-promoting neuropeptide called orexin (ORX)/hypocretin was discovered and determined to be almost exclusively synthesized in the DMH/PeF perifornical hypothalamus and adjacent lateral hypothalamus. The most proximally emergent role of ORX is in regulation of wakefulness through interactions with efferent systems that mediate arousal and energy homeostasis. A hypoactive ORX system is also linked to narcolepsy. However, ORX role in more complex emotional responses is emerging in more recent studies where ORX is linked to depression and anxiety states. Here, we review data that demonstrates ORX ability to mobilize a coordinated adaptive panic/defense response (anxiety, cardiorespiratory, and endocrine components), and summarize the evidence that supports a hyperactive ORX system being linked to pathological panic and anxiety states.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | | | |
Collapse
|
20
|
May A, Jürgens TP. [Therapeutic neuromodulation in primary headaches]. DER NERVENARZT 2011; 82:743-752. [PMID: 20972665 DOI: 10.1007/s00115-010-3170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neuromodulatory techniques have developed rapidly in the therapeutic management of refractory headaches. Invasive procedures comprise peripheral nerve stimulation (particularly occipital nerve stimulation), vagus nerve stimulation, cervical spinal cord stimulation and hypothalamic deep brain stimulation. Transcutaneous electrical nerve stimulation, repetitive transcranial magnetic stimulation and transcranial direct current stimulation are noninvasive variants. Based on current neuroimaging, neurophysiological and clinical studies occipital nerve stimulation and hypothalamic deep brain stimulation are recommended for patients with chronic cluster headache. Less convincing evidence can be found for their use in other refractory headaches such as chronic migraine. No clear recommendation can be given for the other neuromodulatory techniques. The emerging concept of intermittent stimulation of the sphenopalatine ganglion is nonetheless promising. Robust randomized and sham-controlled multicenter studies are needed before these therapeutic approaches are widely implemented. Due to the experimental nature all patients should be treated in clinical studies. It is essential to confirm the correct headache diagnosis and the refractory nature before an invasive approach is considered. Patients should generally be referred to specialized interdisciplinary outpatient departments which closely collaborate with neurosurgeons who are experienced in the implantation of neuromodulatory devices. It is crucial to ensure a competent postoperative follow-up with optimization of stimulation parameters and adjustment of medication.
Collapse
Affiliation(s)
- A May
- Institut für Systemische Neurowissenschaften und Kopfschmerzambulanz der Neurologischen Klinik, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg.
| | | |
Collapse
|
21
|
Subkutane periphere Stimulation des N. occipitalis major zur Behandlung chronischer Kopfschmerzsyndrome. Schmerz 2010; 24:441-8. [DOI: 10.1007/s00482-010-0970-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Haq IU, Foote KD, Goodman WG, Wu SS, Sudhyadhom A, Ricciuti N, Siddiqui MS, Bowers D, Jacobson CE, Ward H, Okun MS. Smile and laughter induction and intraoperative predictors of response to deep brain stimulation for obsessive-compulsive disorder. Neuroimage 2010; 54 Suppl 1:S247-55. [PMID: 20226259 DOI: 10.1016/j.neuroimage.2010.03.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/27/2022] Open
Abstract
We recently treated six patients for OCD utilizing deep brain stimulation (DBS) of the anterior limb of the internal capsule and the nucleus accumbens region (ALIC-NA). We individually tested leads via a scripted intraoperative protocol designed to determine DBS-induced side effects and mood changes. We previously published qualitative data regarding our observations of induced emotional behaviors in our first five subjects. We have now studied these same behaviors in the full cohort of six patients over 2 years of follow-up and have examined the relationship of these behaviors to intraoperative mood changes and postoperative clinical outcomes. Five patients experienced at least one smile response during testing. At higher voltages of stimulation, some of these smiles progressed to natural laughter. Smiles and laughter were associated with mood elevation. At stimulation locations at which smiles were observed, voltage and mood were significantly correlated (p=0.0004 for right brain and p<0.0001 for left brain). In contrast, at contacts where smiles were not observed, mood was negatively correlated with voltage (p=0.0591 for right brain and p=0.0086 for left). Smile and laughter-inducing sites were located relatively medial, posterior, and deep in the ALIC-NA. The presence of stimulation induced laughter predicted improvement in OCD symptoms at 2 years. The higher the percentage of laugh conditions experienced in an individual patient, the greater the reduction in YBOCS (24 months, p=0.034). Other correlations between clinical outcomes and percent of smile/laugh conditions were not significant. These stimulation-induced behaviors were less frequently observed with 1 and 2-month postoperative test stimulation and were not observed at subsequent test stimulation sessions. Intraoperative stimulation-induced laughter may predict long-term OCD response to DBS. Identifying other potential response predictors for OCD will become increasingly important as more patients are implanted with DBS devices. A larger study is needed to better delineate the relationship between induced intraoperative and postoperative emotional behavior and clinical outcome in patients treated with DBS therapy.
Collapse
Affiliation(s)
- Ihtsham U Haq
- Department of Neurology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brittain JS, Green AL, Jenkinson N, Ray NJ, Holland P, Stein JF, Aziz TZ, Davies P. Local Field Potentials Reveal a Distinctive Neural Signature of Cluster Headache in the Hypothalamus. Cephalalgia 2009; 29:1165-73. [DOI: 10.1111/j.1468-2982.2009.01846.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cluster headache (CH) is a debilitating neurovascular condition characterized by severe unilateral periorbital head pain. Deep brain stimulation of the posterior hypothalamus has shown potential in alleviating CH in its most severe, chronic form. During surgical implantation of stimulating macroelectrodes for cluster head pain, one of our patients suffered a CH attack. During the attack local field potentials displayed a significant increase in power of approximately 20 Hz. To the authors' knowledge, this is the first recorded account of neuronal activity observed during a cluster attack. Our results both support and extend the current literature, which has long implicated hypothalamic activation as key to CH generation, predominantly through indirect haemodynamic neuroimaging techniques. Our findings reveal a potential locus in CH neurogenesis and a potential rationale for efficacious stimulator titration.
Collapse
Affiliation(s)
- J-S Brittain
- Department of Physiology, Anatomy & Genetics, University of Oxford
| | - AL Green
- Nuffield Department of Surgery, John Radcliffe Hospital, Oxford, UK
| | - N Jenkinson
- Nuffield Department of Surgery, John Radcliffe Hospital, Oxford, UK
| | - NJ Ray
- Department of Physiology, Anatomy & Genetics, University of Oxford
| | - P Holland
- Nuffield Department of Surgery, John Radcliffe Hospital, Oxford, UK
| | - JF Stein
- Department of Physiology, Anatomy & Genetics, University of Oxford
| | - TZ Aziz
- Department of Physiology, Anatomy & Genetics, University of Oxford
- Nuffield Department of Surgery, John Radcliffe Hospital, Oxford, UK
| | - P Davies
- Nuffield Department of Surgery, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
24
|
Jeong Y, Holden JE. The role of spinal orexin-1 receptors in posterior hypothalamic modulation of neuropathic pain. Neuroscience 2009; 159:1414-21. [PMID: 19409203 PMCID: PMC3463132 DOI: 10.1016/j.neuroscience.2009.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/04/2009] [Indexed: 12/24/2022]
Abstract
The posterior hypothalamus (PH) is known to reduce nociceptive pain, but the effect of PH stimulation on neuropathic pain is not known. Because neurons containing the neurotransmitter orexin-A are located in the PH in some strains of rat and intrathecal injection of orexin-A produces antinociception in a neuropathic pain model, we hypothesized that orexin-A from neurons in the PH modifies nociception in the spinal cord dorsal horn. To test this hypothesis, the cholinergic agonist carbachol or normal saline was microinjected into the PH of lightly anesthetized female Sprague-Dawley rats with chronic constriction injury (CCI) and foot withdrawal latencies (FWL) were measured. Carbachol-induced PH stimulation produced dose dependent antinociception as shown by significantly increased FWL compared to saline controls. To investigate the role of orexin-A in PH-induced antinociception, the orexin-1 receptor antagonist SB-334867 or dimethyl sulfoxide (DMSO) for control, was given intrathecally following carbachol-induced PH stimulation. SB-334867 decreased FWL compared to DMSO controls. These data are suggestive that stimulating the PH produces antinociception in a neuropathic pain model and that the antinociceptive effect is mediated in part by orexin-1 receptors in the spinal cord dorsal horn.
Collapse
Affiliation(s)
- Younhee Jeong
- Kyunghee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Korea (ROK), Phone : 82-2-961-2210, Fax : 82-2-961-9398, Email :
| | - Janean E. Holden
- The University of Michigan, 400 N. Ingalls, Room 2340, Ann Arbor, MI 48109-5482, Phone: 734-763-0011, Fax: 734 936-5525,
| |
Collapse
|
25
|
|
26
|
Bartsch T, Pinsker MO, Rasche D, Kinfe T, Hertel F, Diener HC, Tronnier V, Mehdorn HM, Volkmann J, Deuschl G, Krauss JK. Hypothalamic deep brain stimulation for cluster headache: experience from a new multicase series. Cephalalgia 2008; 28:285-95. [PMID: 18254897 DOI: 10.1111/j.1468-2982.2007.01531.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deep brain stimulation (DBS) of the posterior hypothalamus was found to be effective in the treatment of drug-resistant chronic cluster headache. We report the results of a multicentre case series of six patients with chronic cluster headache in whom a DBS in the posterior hypothalamus was performed. Electrodes were implanted stereotactically in the ipsilateral posterior hypothalamus according to published coordinates 2 mm lateral, 3 mm posterior and 5 mm inferior referenced to the mid-AC-PC line. Microelectrode recordings at the target revealed single unit activity with a mean discharge rate of 17 Hz (range 13-35 Hz, n = 4). Out of six patients, four showed a profound decrease of their attack frequency and pain intensity on the visual analogue scale during the first 6 months. Of these, one patient was attack free for 6 months under neurostimulation before returning to the baseline which led to abortion of the DBS. Two patients had experienced only a marginal, non-significant decrease within the first weeks under neurostimulation before returning to their former attack frequency. After a mean follow-up of 17 months, three patients are almost completely attack free, whereas three patients can be considered as treatment failures. The stimulation was well tolerated and stimulation-related side-effects were not observed on long term. DBS of the posterior inferior hypothalamus is an effective therapeutic option in a subset of patients. Future controlled multicentre trials will need to confirm this open-label experience and should help to better define predictive factors for non-responders.
Collapse
Affiliation(s)
- T Bartsch
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Der Einfluss der Wissenschaft auf den schmerzhaften Kopf – ein Update. Schmerz 2008; 22 Suppl 1:5-6. [DOI: 10.1007/s00482-008-0627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
|