1
|
Saulnier A, Bleu J, Boos A, Millet M, Zahn S, Ronot P, Masoudi IE, Rojas ER, Uhlrich P, Del Nero M, Massemin S. Reproductive differences between urban and forest birds across the years: importance of environmental and weather parameters. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Jeong MS, Choi CY, Kim H, Lee WS. Predicting climate-driven shifts in the breeding phenology of Varied Tits ( Sittiparus various) in South Korean forests. Anim Cells Syst (Seoul) 2019; 23:422-432. [PMID: 31853380 PMCID: PMC6913659 DOI: 10.1080/19768354.2019.1675759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/16/2019] [Indexed: 11/12/2022] Open
Abstract
Phenological shifts of plants and animals due to climate change can vary among regions and species, requiring study of local ecosystems to understand specific impacts. The reproductive timing of insectivorous songbirds in temperate forests is tightly synchronized with peak prey abundance, and thus they can be susceptible to such shift in timing. We aimed to investigate the effect of future climate change on the egg-laying phenology of the Varied Tit (Sittiparus various), which is common and widely distributed in South Korean forests. We developed the predictive model by investigating their egg-laying dates in response to spring temperatures along geographical gradients, and our model indicated that the tits lay eggs earlier when the average of daily mean and daily maximum temperatures rise. We predicted future shifts in egg-laying dates based on the most recent climate change model published by the Intergovernmental Panel on Climate Change (IPCC), under a scenario with no climate change mitigation and under a scenario with moderate mitigation. Under this outcome, this species might be unable to adapt to rapid climate change due to asynchrony with prey species during the reproductive period. If no mitigation is undertaken, our model predicts that egg-laying dates will be advanced by more than 10 days compared to the present in 83.58% of South Korea. However, even moderate mitigation will arrest this phenomenon and maintain present egg-laying dates. These results demonstrate the first quantitative assessment for the effect of warming temperatures on the phenological response of insectivorous songbirds in South Korea.
Collapse
Affiliation(s)
- Min-Su Jeong
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Young Choi
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hankyu Kim
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Woo-Shin Lee
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Donnelly A, Yu R. The rise of phenology with climate change: an evaluation of IJB publications. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:29-50. [PMID: 28527153 DOI: 10.1007/s00484-017-1371-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 05/28/2023]
Abstract
In recent decades, phenology has become an important tool by which to measure both the impact of climate change on ecosystems and the feedback of ecosystems to the climate system. However, there has been little attempt to date to systematically quantify the increase in the number of scientific publications with a focus on phenology and climate change. In order to partially address this issue, we examined the number of articles (original papers, reviews and short communications) containing the terms 'phenology' and 'climate change' in the title, abstract or keywords, published in the International Journal of Biometeorology in the 60 years since its inception in 1957. We manually inspected all issues prior to 1987 for the search terms and subsequently used the search facility on the Web of Science online database. The overall number of articles published per decade remained relatively constant (255-378) but rose rapidly to 1053 in the most recent decade (2007-2016), accompanied by an increase (41-172) in the number of articles containing the search terms. A number of factors may have contributed to this rise, including the recognition of the value of phenology as an indicator of climate change and the initiation in 2010 of a series of conferences focusing on phenology which subsequently led to two special issues of the journal. The word 'phenology' was in use from the first issue, whereas 'climate change' only emerged in 1987 and peaked in 2014. New technologies such as satellite remote sensing and the internet led to an expansion of and greater access to a growing reservoir of phenological information. The application of phenological data included determining the impact of warming of phenophases, predicting wine quality and the pollen season, demonstrating the potential for mismatch to occur and both reconstructing and forecasting climate. Even though this analysis was limited to one journal, it is likely to be indicative of a similar trend across other scientific publications.
Collapse
Affiliation(s)
- Alison Donnelly
- Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA.
| | - Rong Yu
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
4
|
Glądalski M, Bańbura M, Kaliński A, Markowski M, Skwarska J, Wawrzyniak J, Zieliński P, Bańbura J. Effects of extreme thermal conditions on plasticity in breeding phenology and double-broodedness of Great Tits and Blue Tits in central Poland in 2013 and 2014. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1795-1800. [PMID: 26983847 PMCID: PMC5085981 DOI: 10.1007/s00484-016-1152-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 05/28/2023]
Abstract
Many avian species in Europe breed earlier as a result of higher temperatures caused by global climate changes. Climate change means not only higher temperatures but also more frequent extreme weather events, sometimes contrasting with the long-term trends. It was suggested that we should look closely at every extreme phenomenon and its consequences for the phenology of organisms. Examining the limits of phenotypic plasticity may be an important goal for future research. Extremely low spring temperatures in 2013 (coldest spring in 40 years) resulted in birds laying unusually late, and it was followed in 2014 by the earliest breeding season on record (warmest spring in 40 years). Here, we present results concerning breeding phenology and double-broodedness in the Great Tit (Parus major) and the Blue Tit (Cyanistes caeruleus) in 2013 and 2014 in an urban parkland and a deciduous forest in central Poland. Great Tits started laying eggs 18.2 days later in 2013 than in 2014 in the parkland, whereas the analogous difference was 21.1 days in the forest. Blue Tits started laying eggs in the parkland 18.5 days later in 2013 than in 2014, while the analogous difference was 21.6 days in the forest. The difference in the proportion of second clutches in Great Tits between 2013 (fewer second clutches) and 2014 (more second clutches) was highly significant in the parkland and in the forest. This rather large extent of breeding plasticity has developed in reaction to challenges of irregular inter-annual variability of climatic conditions. Such a buffer of plasticity may be sufficient for Blue Tits and Great Tits to adjust the timing of breeding to the upcoming climate changes.
Collapse
Affiliation(s)
- Michał Glądalski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland.
| | - Mirosława Bańbura
- Museum of Natural History, Faculty of Biology and Environmental Protection, University of Łódź, Kilińskiego 101, 90-011, Łódź, Poland
| | - Adam Kaliński
- Department of Teacher Training and Biological Diversity Studies, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Marcin Markowski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Joanna Skwarska
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Jarosław Wawrzyniak
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Piotr Zieliński
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Jerzy Bańbura
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| |
Collapse
|
5
|
Vaugoyeau M, Adriaensen F, Artemyev A, Bańbura J, Barba E, Biard C, Blondel J, Bouslama Z, Bouvier JC, Camprodon J, Cecere F, Charmantier A, Charter M, Cichoń M, Cusimano C, Czeszczewik D, Demeyrier V, Doligez B, Doutrelant C, Dubiec A, Eens M, Eeva T, Faivre B, Ferns PN, Forsman JT, García-Del-Rey E, Goldshtein A, Goodenough AE, Gosler AG, Grégoire A, Gustafsson L, Harnist I, Hartley IR, Heeb P, Hinsley SA, Isenmann P, Jacob S, Juškaitis R, Korpimäki E, Krams I, Laaksonen T, Lambrechts MM, Leclercq B, Lehikoinen E, Loukola O, Lundberg A, Mainwaring MC, Mänd R, Massa B, Mazgajski TD, Merino S, Mitrus C, Mönkkönen M, Morin X, Nager RG, Nilsson JÅ, Nilsson SG, Norte AC, Orell M, Perret P, Perrins CM, Pimentel CS, Pinxten R, Richner H, Robles H, Rytkönen S, Senar JC, Seppänen JT, Pascoal da Silva L, Slagsvold T, Solonen T, Sorace A, Stenning MJ, Tryjanowski P, von Numers M, Walankiewicz W, Møller AP. Interspecific variation in the relationship between clutch size, laying date and intensity of urbanization in four species of hole-nesting birds. Ecol Evol 2016; 6:5907-20. [PMID: 27547364 PMCID: PMC4983601 DOI: 10.1002/ece3.2335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 01/20/2023] Open
Abstract
The increase in size of human populations in urban and agricultural areas has resulted in considerable habitat conversion globally. Such anthropogenic areas have specific environmental characteristics, which influence the physiology, life history, and population dynamics of plants and animals. For example, the date of bud burst is advanced in urban compared to nearby natural areas. In some birds, breeding success is determined by synchrony between timing of breeding and peak food abundance. Pertinently, caterpillars are an important food source for the nestlings of many bird species, and their abundance is influenced by environmental factors such as temperature and date of bud burst. Higher temperatures and advanced date of bud burst in urban areas could advance peak caterpillar abundance and thus affect breeding phenology of birds. In order to test whether laying date advance and clutch sizes decrease with the intensity of urbanization, we analyzed the timing of breeding and clutch size in relation to intensity of urbanization as a measure of human impact in 199 nest box plots across Europe, North Africa, and the Middle East (i.e., the Western Palearctic) for four species of hole‐nesters: blue tits (Cyanistes caeruleus), great tits (Parus major), collared flycatchers (Ficedula albicollis), and pied flycatchers (Ficedula hypoleuca). Meanwhile, we estimated the intensity of urbanization as the density of buildings surrounding study plots measured on orthophotographs. For the four study species, the intensity of urbanization was not correlated with laying date. Clutch size in blue and great tits does not seem affected by the intensity of urbanization, while in collared and pied flycatchers it decreased with increasing intensity of urbanization. This is the first large‐scale study showing a species‐specific major correlation between intensity of urbanization and the ecology of breeding. The underlying mechanisms for the relationships between life history and urbanization remain to be determined. We propose that effects of food abundance or quality, temperature, noise, pollution, or disturbance by humans may on their own or in combination affect laying date and/or clutch size.
Collapse
Affiliation(s)
- Marie Vaugoyeau
- Ecologie Systématique Evolution Université Paris-Sud, CNRS, Agro Paris Tech, Université Paris-Saclay Orsay France
| | - Frank Adriaensen
- Department of Biology Evolutionary Ecology Group University of Antwerp Antwerp Belgium
| | - Alexandr Artemyev
- Institute of Biology Karelian Research Centre Russian Academy of Sciences Petrozavodsk Russia
| | - Jerzy Bańbura
- Department of Experimental Zoology & Evolutionary Biology University of Lodź Lodź Poland
| | - Emilio Barba
- Terrestrial Vertebrates Research Unit "Cavanilles" Institute of Biodiversity and Evolutionary Biology University of Valencia Paterna Spain
| | - Clotilde Biard
- Université Pierre et Marie Curie Sorbonne universités UPMC Univ Paris 06, UPEC, Paris 7 CNRS, INRA, IRD, Institut d'Écologie et des Sciences de l'Environnement de Paris Paris France
| | - Jacques Blondel
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Zihad Bouslama
- Research Laboratory "Ecology of Terrestrial and Aquatic Systems" University Badji Mokhtar Annaba Algeria
| | | | - Jordi Camprodon
- Àrea de Biodiversitat Grup de Biologia de la Conservació Centre Tecnològic Forestal de Catalunya Solsona Spain
| | | | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Motti Charter
- University of Haifa Haifa Israel; Society for the Protection of Nature University of Lausanne Lausanne Switzerland
| | - Mariusz Cichoń
- Institute of Environmental Science Jagiellonian University Krakow Poland
| | - Camillo Cusimano
- Department of Agriculture and Forest Sciences Università di Palermo Palermo Italy
| | - Dorota Czeszczewik
- Department of Zoology Faculty of Natural Science Siedlce University of Natural Sciences and Humanities Siedlce Poland
| | - Virginie Demeyrier
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Blandine Doligez
- Department of Biometry & Evolutionary Biology University of Lyon 1 Villeurbanne France
| | - Claire Doutrelant
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Anna Dubiec
- Museum and Institute of Zoology Polish Academy of Sciences Warsaw Poland
| | - Marcel Eens
- Department of Biology Behavioural Ecology and Ecophysiology Group University of Antwerp Antwerp Belgium
| | - Tapio Eeva
- Section of Ecology Department of Biology University of Turku Turku Finland
| | - Bruno Faivre
- BioGéoSciences Université de Bourgogne Dijon France
| | | | | | - Eduardo García-Del-Rey
- Departamento de Ecología Facultad de Biología Universidad de La Laguna, San Cristóbal de La Laguna Tenerife Canary Islands Spain
| | | | - Anne E Goodenough
- Department of Natural and Social Sciences University of Gloucestershire Gloucestershire UK
| | - Andrew G Gosler
- Department of Zoology Edward Grey Institute of Field Ornithology & Institute of Human Sciences Oxford UK
| | - Arnaud Grégoire
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Lars Gustafsson
- Department of Animal Ecology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Iga Harnist
- Museum and Institute of Zoology Polish Academy of Sciences Warsaw Poland
| | - Ian R Hartley
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Philipp Heeb
- Laboratoire Évolution & Diversité Biologique UPS Toulouse III Toulouse France
| | | | - Paul Isenmann
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Staffan Jacob
- Laboratoire Évolution & Diversité Biologique UPS Toulouse III Toulouse France
| | - Rimvydas Juškaitis
- Institute of Ecology of Nature Research Centre Akademijos 2 Vilnius Lithuania
| | - Erkki Korpimäki
- Section of Ecology Department of Biology University of Turku Turku Finland
| | - Indrikis Krams
- Institute of Ecology & Earth Sciences University of Tartu Tartu Estonia
| | - Toni Laaksonen
- Section of Ecology Department of Biology University of Turku Turku Finland
| | - Marcel M Lambrechts
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | | | - Esa Lehikoinen
- Section of Ecology Department of Biology University of Turku Turku Finland
| | - Olli Loukola
- Department of Ecology University of Oulu Oulu Finland
| | - Arne Lundberg
- Department of Animal Ecology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | | | - Raivo Mänd
- Institute of Ecology & Earth Sciences University of Tartu Tartu Estonia
| | - Bruno Massa
- Department of Agriculture and Forest Sciences Università di Palermo Palermo Italy
| | - Tomasz D Mazgajski
- Museum and Institute of Zoology Polish Academy of Sciences Warsaw Poland
| | - Santiago Merino
- Departamento de Ecología Evolutiva Museo Nacional de Ciencias Naturales Agencia Estatal Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Cezary Mitrus
- Department of Zoology Rzeszów University Rzeszów Poland
| | - Mikko Mönkkönen
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France; Department of Biological and Environmental Sciences University of Jyväskylä Jyväskylä Finland
| | - Xavier Morin
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Ruedi G Nager
- Institute of Biodiversity, Animal Health & Comparative Medicine University of Glasgow Glasgow UK
| | | | | | - Ana C Norte
- Department of Life SciencesInstitute of Marine ResearchUniversity of CoimbraCoimbraPortugal; Department of Life SciencesMARE - Marine and Environmental Sciences CentreUniversity of CoimbraCoimbraPortugal
| | - Markku Orell
- Department of Ecology University of Oulu Oulu Finland
| | - Philippe Perret
- Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS Montpellier France
| | - Christopher M Perrins
- Department of Zoology Edward Grey Institute of Field Ornithology & Institute of Human Sciences Oxford UK
| | - Carla S Pimentel
- Centro de Estudos Florestais Instituto Superior de Agronomia University of Lisbon Lisbon Portugal
| | - Rianne Pinxten
- Department of Biology Behavioural Ecology and Ecophysiology Group University of Antwerp Antwerp Belgium; Didactica Research Unit Faculty of Social Sciences University of Antwerp Antwerp Belgium
| | - Heinz Richner
- Institute of Ecology & Evolution (IEE) University of Bern Bern Switzerland
| | - Hugo Robles
- Department of Biology Evolutionary Ecology Group University of Antwerp Antwerp Belgium; Evolutionary Biology Group (GIBE) Falculty of Sciences University of A Coruña A Coruña Spain
| | | | - Juan Carlos Senar
- Unidad Asociada CSIC de Ecología Evolutiva y de la Conducta Nat-Museu de Ciències Naturals de Barcelona Barcelona Spain
| | | | - Luis Pascoal da Silva
- Department of Life Sciences Institute of Marine Research University of Coimbra Coimbra Portugal
| | - Tore Slagsvold
- Department of Biosciences University of Oslo Oslo Norway
| | | | | | | | - Piotr Tryjanowski
- Institute of Zoology Poznan University of Life Sciences Poznań Poland
| | | | - Wieslaw Walankiewicz
- Department of Zoology Faculty of Natural Science Siedlce University of Natural Sciences and Humanities Siedlce Poland
| | - Anders Pape Møller
- Ecologie Systématique Evolution Université Paris-Sud, CNRS, Agro Paris Tech, Université Paris-Saclay Orsay France
| |
Collapse
|
6
|
Indykiewicz P. Egg Losses Caused by Cold Snap in the Black-Headed Gull,Chroicocephalus ridibundusL. POLISH JOURNAL OF ECOLOGY 2015. [DOI: 10.3161/15052249pje2015.63.3.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Glądalski M, Bańbura M, Kaliński A, Markowski M, Skwarska J, Wawrzyniak J, Zieliński P, Bańbura J. Extreme weather event in spring 2013 delayed breeding time of Great Tit and Blue Tit. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2014; 58:2169-73. [PMID: 24659171 PMCID: PMC4234888 DOI: 10.1007/s00484-014-0816-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 05/16/2023]
Abstract
The impact of climatic changes on life cycles by re-scheduling the timing of reproduction is an important topic in studies of biodiversity. Global warming causes and will probably cause in the future not only raising temperatures but also an increasing frequency of extreme weather events. In 2013, the winter in central and north Europe ended late, with low temperatures and long-retained snow cover--this extreme weather phenomenon acted in opposition to the increasing temperature trend. In 2013, thermal conditions measured by the warmth sum in the period 15 March–15 April, a critical time for early breeding passerines, went far beyond the range of the warmth sums for at least 40 preceding years. Regardless of what was the reason for the extreme early spring 2013 and assuming that there is a potential for more atypical years because of climate change, we should look closely at every extreme phenomenon and its consequences for the phenology of organisms. In this paper, we report that the prolonged occurrence of winter conditions during the time that is crucial for Blue Tit (Cyanistes caeruleus) and Great Tit (Parus major) reproduction caused a substantial delay in the onset of egg laying in comparison with typical springs.
Collapse
Affiliation(s)
- Michał Glądalski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Matzneller P, Blümel K, Chmielewski FM. Models for the beginning of sour cherry blossom. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2014; 58:703-715. [PMID: 23456375 DOI: 10.1007/s00484-013-0651-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/07/2013] [Accepted: 02/10/2013] [Indexed: 06/01/2023]
Abstract
Seven different model approaches to calculate the onset of sour cherry blossom for the main growing regions in Rhineland-Palatinate (Germany) were compared. Three of the approaches were pure forcing models (M1, M2, M2DL) and the remaining four models were combined sequential chilling-forcing (CF) models. Model M1 was the commonly used growing degree day (GDD) model in which the starting date of temperature accumulation (t1), the base temperature (TBF) and the forcing requirement F* were optimized on the basis of observed data. Because of a relatively late optimal starting date (t1=1 March), the model can be applied only to calculate the onset of cherry blossom for present climate conditions. In order to develop forcing models that could possibly be used to estimate possible shifts in the timing of cherry blossom due to climate change, the starting date t 1 of the models was intentionally set to 1 January (M2, M2DL). Unfortunately, model M2 failed in both the optimization and validation period. The introduction of a daylength term (DL) in model M2DL improved model performance. In order to project possible shifts in the timing of plant phenological events, combined CF-models are preferred over pure GDD-models. For this reason four CF-models were developed with (M3DL, M4DL) and without (M3, M4) consideration of daylength in the GDD-approach. The chilling requirement was calculated using chilling hours (M3, M3DL) and chill portions (M4, M4DL). Both models without daylength estimated implausible model parameters and failed model validation. However, models M3DL and M4DL showed meaningful model parameter estimations and the error between modelled and observed data was markedly reduced. Moreover, the models optimized and validated (internal validation) for one sour cherry growing region in Germany, were applied successfully to calculate the beginning of the blossom period in other regions in Europe and even at one station in North America (external validation).
Collapse
Affiliation(s)
- Philipp Matzneller
- Agricultural Climatology, Faculty of Agriculture and Horticulture, Humboldt-University of Berlin, Albrecht-Thaer-Weg 5, 14195, Berlin, Germany,
| | | | | |
Collapse
|