1
|
Teyssier JR, Brugaletta G, Sirri F, Dridi S, Rochell SJ. A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Front Physiol 2022; 13:943612. [PMID: 36003648 PMCID: PMC9393371 DOI: 10.3389/fphys.2022.943612] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
With the growing global demand for animal protein and rising temperatures caused by climate change, heat stress (HS) is one of the main emerging environmental challenges for the poultry industry. Commercially-reared birds are particularly sensitive to hot temperatures, so adopting production systems that mitigate the adverse effects of HS on bird performance is essential and requires a holistic approach. Feeding and nutrition can play important roles in limiting the heat load on birds; therefore, this review aims to describe the effects of HS on feed intake (FI) and nutrient digestibility and to highlight feeding strategies and nutritional solutions to potentially mitigate some of the deleterious effects of HS on broiler chickens. The reduction of FI is one of the main behavioral changes induced by hot temperatures as birds attempt to limit heat production associated with the digestion, absorption, and metabolism of nutrients. Although the intensity and length of the heat period influences the type and magnitude of responses, reduced FI explains most of the performance degradation observed in HS broilers, while reduced nutrient digestibility appears to only explain a small proportion of impaired feed efficiency following HS. Targeted feeding strategies, including feed restriction and withdrawal, dual feeding, and wet feeding, have showed some promising results under hot temperatures, but these can be difficult to implement in intensive rearing systems. Concerning diet composition, feeding increased nutrient and energy diets can potentially compensate for decreased FI during HS. Indeed, high energy and high crude protein diets have both been shown to improve bird performance under HS conditions. Specifically, positive results may be obtained with increased added fat concentrations since lipids have a lower thermogenic effect compared to proteins and carbohydrates. Moreover, increased supplementation of some essential amino acids can help support increased amino acid requirements for maintenance functions caused by HS. Further research to better characterize and advance these nutritional strategies will help establish economically viable solutions to enhance productivity, health, welfare, and meat quality of broilers facing HS.
Collapse
Affiliation(s)
- Jean-Rémi Teyssier
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Giorgio Brugaletta
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Samuel J. Rochell
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
2
|
Vandana GD, Sejian V, Lees AM, Pragna P, Silpa MV, Maloney SK. Heat stress and poultry production: impact and amelioration. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:163-179. [PMID: 33025116 DOI: 10.1007/s00484-020-02023-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Globally, the poultry industry is gaining significant importance among the agricultural and its allied sectors. However, heat stress was found to negatively affect the poultry production particularly in the tropical regions. This review is therefore an attempt to generate information pertaining to the impacts of heat stress on poultry production and its amelioration. Heat stress reduces the growth, reproductive performance, and egg production in poultry birds. The reduction in productive potential of poultry birds on exposure to heat stress may be attributed to the deviation of energy resources from production to adaptation pathway. There are different approaches pertaining to relieving the adverse impacts of heat stress on poultry production. These approaches can be broadly categorized under genetic, management, and nutritional strategies. These approaches may reduce the negative effects of heat stress and enhance the productive performance of poultry birds. The management strategies include appropriate shelter design, providing shade, using sprinklers, implementing cooling devices, and using fans and ventilation systems. The recommended floor space for mature birds weighing 1.7 kg is 0.06 m2/bird while it is 0.13 m2/bird for the birds weighing 3.5 kg with 27.8 kg/m2 bird density in either case. The nutritional interventions comprise ration balancing and providing essential micronutrients to improve the productive and reproductive performance in poultry birds. Fat, antioxidants, yeast, and electrolyte supplementations are some of the most commonly used nutritional strategies to ensure optimum production in the poultry industry. Furthermore, providing adequate water supply and disease surveillance measures may help to ensure optimum meat and egg production in the birds. The advanced biotechnological tools may aid to identify suitable genetic markers in poultry birds which might help in developing new strains of higher thermo-tolerance by designing suitable breeding program involving marker-assisted selection. These strategies may help to optimize and sustain poultry production in the changing climate scenario.
Collapse
Affiliation(s)
- G D Vandana
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, 680656, India
| | - V Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India.
- Centre for Climate Resilient Animal Adaptation Studies, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, 560030, Bangalore, India.
| | - A M Lees
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2350, Australia
| | - P Pragna
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences Dookie Campus, Dookie College, The University of Melbourne, Melbourne, Victoria, 3647, Australia
| | - M V Silpa
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, 35390, Gießen, Germany
| | - Shane K Maloney
- The School of Human Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
de Lima RN, de Souza JBF, Batista NV, de Andrade AKS, Soares ECA, dos Santos Filho CA, da Silva LA, Coelho WAC, de Macedo Costa LL, de Oliveira Lima P. Mitigating heat stress in dairy goats with inclusion of seaweed Gracilaria birdiae in diet. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Mutibvu T, Chimonyo M, Halimani TE. Physiological Responses of Slow-Growing Chickens under Diurnally Cycling Temperature in a Hot Environment. ACTA ACUST UNITED AC 2017. [DOI: 10.1590/1806-9061-2017-0485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- T Mutibvu
- University of KwaZulu-Natal, South Africa
| | - M Chimonyo
- University of KwaZulu-Natal, South Africa
| | | |
Collapse
|
5
|
Mutibvu T, Chimonyo M, Halimani T. Tonic immobility, heterophil to lymphocyte ratio, and organ weights in slow-growing chickens. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfw066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
6
|
Torquato J, Souza J, Queiroz J, Costa L. Termografia Infravermelha Aplicada a Emas (Rhea americana). JOURNAL OF ANIMAL BEHAVIOUR AND BIOMETEOROLOGY 2015. [DOI: 10.14269/2318-1265/jabb.v3n2p51-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|