1
|
Sharma A, Kumar BVS, Dubey PP, Kashyap N. Delay in puberty is dependent on heat shock protein B1 expression in native cross layers of Punjab under heat stress. Reprod Domest Anim 2021; 57:284-291. [PMID: 34845785 DOI: 10.1111/rda.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Small heat shock protein B1 (HspB1) has been reported to play an essential role in thermotolerance. This study aimed to determine a correlation (if any) between HspB1 expression and age at first egg lay (puberty) in a native cross-layer poultry of Punjab under heat stress. Forty native cross-layer birds were reared in two different seasons, viz. summer (THI was more than 27), classified as the heat-stressed group (n = 20) and winter season (THI was less than 21), classified as the control group (n = 20). Blood was collected from both the groups of birds in their 15th week of age and at puberty. Serum catalase and superoxide dismutase activities, reduced glutathione and corticosterone concentration and lipid peroxidation were measured to assess the oxidative stress in both the groups of birds. The serum antioxidants significantly decreased whilst corticosterone levels and lipid peroxidation significantly elevated in birds in response to summer heat stress. Moreover, in summer season, the activities of the antioxidant enzymes further decreased and lipid peroxidation further increased significantly in birds from their pre-pubertal stage to puberty, which was not observed during the winter season. A clone of chicken HspB1 in BL21 (DE3) cells was revived, and recombinant HspB1 was purified using Ni-NTA agarose column. Serum HspB1 concentration was estimated in different groups of birds by indirect ELISA that has been standardized using the recombinant chicken HspB1. Compared to the control, birds under heat stress had significantly higher serum HspB1 levels. The delay in puberty of all the heat-stressed birds was significantly associated with the increase in their serum HspB1 levels. Taken together, the expression of HspB1 was found to be associated with age at puberty in the native cross poultry layers of Punjab.
Collapse
Affiliation(s)
- Astha Sharma
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - B V Sunil Kumar
- Department of Microbial and Environmental Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Prem Prakash Dubey
- Department of Animal Genetics and Breeding, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Neeraj Kashyap
- Department of Animal Genetics and Breeding, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
2
|
Akinyemi F, Adewole D. Environmental Stress in Chickens and the Potential Effectiveness of Dietary Vitamin Supplementation. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.775311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental stressors can promote the vulnerability of animals to infections; it is therefore, essential to understand how stressors affect the immune system, the adaptive capacity of animals to respond, and effective techniques in managing stress. This review highlights scientific evidence regarding environmental stress challenge models and the potential effectiveness of vitamin supplementation. The major environmental stressors discussed are heat and cold stress, feed restriction, stocking density, and pollutants. Much work has been done to identify the effects of environmental stress in broilers and layers, while few involved other types of poultry. Studies indicated that chickens' performance, health, and welfare are compromised when challenged with environmental stress. These stressors result in physiological alterations, behavioral changes, decreased egg and meat quality, tissue and intestinal damage, and high mortalities. The application of vitamins with other nutritional approaches can help in combating these environmental stressors in chickens. Poultry birds do not synthesize sufficient vitamins during stressful periods. It is therefore suggested that chicken diets are supplemented with vitamins when subjected to environmental stress. Combination of vitamins are considered more efficient than the use of individual vitamins in alleviating environmental stress in chickens.
Collapse
|
3
|
Kpomasse CC, Oke OE, Houndonougbo FM, Tona K. Broiler production challenges in the tropics: A review. Vet Med Sci 2021; 7:831-842. [PMID: 33559980 PMCID: PMC8136938 DOI: 10.1002/vms3.435] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
Under tropical climate, broiler production is encumbered by several constraints which make it difficult for them to attain their genetic potential. The scarcity and high price of poultry feed and veterinary services and the harsh environmental conditions with respect to thermal stress are some of the challenges that hinder optimal growth of the birds. Limited availability of feedstuffs, including crucial feed ingredients like maize and oil seedcakes, is an important challenge to the sector, since feed still represents a major cost of producing broiler chickens. Additionally, the problem of climate change, which has become a global concern, is the main problem in broiler production under hot and humid climate. Under high ambient temperature, feed intake decreases, carbohydrates metabolism and protein synthesis efficiency are disturbed. Lipid utilization is lower and glucose or insulin homeostasis is altered while fat deposition and oxidative stress increases. Several strategies are used to ameliorate the effect of heat stress in poultry. The objective of this review was to summarize the challenge in broiler production under hot and humid climate and different approaches to fight heat stress in poultry.
Collapse
Affiliation(s)
- Cocou Claude Kpomasse
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
| | - Oyegunle Emmanuel Oke
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo.,Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Kokou Tona
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
| |
Collapse
|
4
|
Eydivandi S, Roudbar MA, Karimi MO, Sahana G. Genomic scans for selective sweeps through haplotype homozygosity and allelic fixation in 14 indigenous sheep breeds from Middle East and South Asia. Sci Rep 2021; 11:2834. [PMID: 33531649 PMCID: PMC7854752 DOI: 10.1038/s41598-021-82625-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
The performance and productivity of livestock have consistently improved by natural and artificial selection over the centuries. Both these selections are expected to leave patterns on the genome and lead to changes in allele frequencies, but natural selection has played the major role among indigenous populations. Detecting selective sweeps in livestock may assist in understanding the processes involved in domestication, genome evolution and discovery of genomic regions associated with economically important traits. We investigated population genetic diversity and selection signals in this study using SNP genotype data of 14 indigenous sheep breeds from Middle East and South Asia, including six breeds from Iran, namely Iranian Balochi, Afshari, Moghani, Qezel, Zel, and Lori-Bakhtiari, three breeds from Afghanistan, namely Afghan Balochi, Arabi, and Gadik, three breeds from India, namely Indian Garole, Changthangi, and Deccani, and two breeds from Bangladesh, namely Bangladeshi Garole and Bangladesh East. The SNP genotype data were generated by the Illumina OvineSNP50 Genotyping BeadChip array. To detect genetic diversity and population structure, we used principal component analysis (PCA), admixture, phylogenetic analyses, and Runs of homozygosity. We applied four complementary statistical tests, FST (fixation index), xp-EHH (cross-population extended haplotype homozygosity), Rsb (extended haplotype homozygosity between-populations), and FLK (the extension of the Lewontin and Krakauer) to detect selective sweeps. Our results not only confirm the previous studies but also provide a suite of novel candidate genes involved in different traits in sheep. On average, FST, xp-EHH, Rsb, and FLK detected 128, 207, 222, and 252 genomic regions as candidates for selective sweeps, respectively. Furthermore, nine overlapping candidate genes were detected by these four tests, especially TNIK, DOCK1, USH2A, and TYW1B which associate with resistance to diseases and climate adaptation. Knowledge of candidate genomic regions in sheep populations may facilitate the identification and potential exploitation of the underlying genes in sheep breeding.
Collapse
Affiliation(s)
- Sirous Eydivandi
- Department of Animal Science, Behbahan Branch, Islamic Azad University, Behbahan, Iran.
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, 8830, Tjele, Denmark.
| | - Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful, Iran
| | - Mohammad Osman Karimi
- Department of Animal Science, Faculty of Agriculture, Herat University, Herat, Afghanistan
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, 8830, Tjele, Denmark
| |
Collapse
|
5
|
Perini F, Cendron F, Rovelli G, Castellini C, Cassandro M, Lasagna E. Emerging Genetic Tools to Investigate Molecular Pathways Related to Heat Stress in Chickens: A Review. Animals (Basel) 2020; 11:ani11010046. [PMID: 33383690 PMCID: PMC7823582 DOI: 10.3390/ani11010046] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary New genomic tools have been used as an instrument in order to assess the molecular pathway involved in heat stress resistance. Local chicken breeds have a better attitude to face heat stress. This review aims to summarize studies linked to chickens, heat stress, and heat shock protein. Abstract Chicken products are the most consumed animal-sourced foods at a global level across greatly diverse cultures, traditions, and religions. The consumption of chicken meat has increased rapidly in the past few decades and chicken meat is the main animal protein source in developing countries. Heat stress is one of the environmental factors which decreases the productive performance of poultry and meat quality. Heat stress produces the over-expression of heat shock factors and heat shock proteins in chicken tissues. Heat shock proteins regulate several molecular pathways in cells in response to stress conditions, changing the homeostasis of cells and tissues. These changes can affect the physiology of the tissue and hence the production ability of chickens. Indeed, commercial chicken strains can reach a high production level, but their body metabolism, being comparatively accelerated, has poor thermoregulation. In contrast, native backyard chickens are more adapted to the environments in which they live, with a robustness that allows them to survive and reproduce constantly. In the past few years, new molecular tools have been developed, such as RNA-Seq, Single Nucleotide Polymorphisms (SNPs), and bioinformatics approaches such as Genome-Wide Association Study (GWAS). Based on these genetic tools, many studies have detected the main pathways involved in cellular response mechanisms. In this context, it is necessary to clarify all the genetic and molecular mechanisms involved in heat stress response. Hence, this paper aims to review the ability of the new generation of genetic tools to clarify the molecular pathways associated with heat stress in chickens, offering new perspectives for the use of these findings in the animal breeding field.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
- Correspondence:
| | - Giacomo Rovelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia (PG), Italy; (F.P.); (G.R.); (C.C.); (E.L.)
| |
Collapse
|
6
|
do Nascimento Neto JF, da Mota AJ, Roque RA, Heinrichs-Caldas W, Tadei WP. Analysis of the transcription of genes encoding heat shock proteins (hsp) in Aedes aegypti Linnaeus, 1762 (Diptera: Culicidae), maintained under climatic conditions provided by the IPCC (Intergovernmental Panel On Climate Change) for the year 2100. INFECTION GENETICS AND EVOLUTION 2020; 86:104626. [PMID: 33166684 DOI: 10.1016/j.meegid.2020.104626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
Human actions intensify the greenhouse effect, aggravating climate changes in the Amazon and elsewhere in the world. The Intergovernmental Panel on Climate Change (IPCC) foresees a global increase of up to 4.5 °C and 850 ppm CO2 (above current levels) by 2100. This will impact the biology of the Aedes aegypti mosquito, vector of Dengue, Zika, urban Yellow Fever and Chikungunya. Heat shock proteins are associated with adaptations to anthropic environments and the interaction of some viruses with the vector. The transcription of the hsp26, hsp83 and hsc70 genes of an A. aegypti population, maintained for more than forty-eight generations, in the Current, Intermediate and Extreme climatic scenario predicted by the IPCC was evaluated with qPCR. In females, highest levels of hsp26, hsp83 and hsc70 expression occurred in the Intermediate scenario, while in males, levels were high only for hsp26 gene in Current and Extreme scenarios. Expression of hsp83 and hsc70 genes in males was low under all climatic scenarios, while in the Extreme scenario females had lower expression than in the Current scenario. The data suggest compensatory or adaptive processes acting on heat shock proteins, which can lead to changes in the mosquito's biology, altering vectorial competence.
Collapse
Affiliation(s)
- Joaquim Ferreira do Nascimento Neto
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva - GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brazil; Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brazil.
| | - Adolfo José da Mota
- Faculdade de Ciências Agrárias - FCA, Universidade Federal do Amazonas - UFAM, Manaus, Amazonas, Brazil.
| | - Rosemary Aparecida Roque
- Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brazil
| | - Waldir Heinrichs-Caldas
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva - GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brazil; Laboratório de Ecofisiologia e Evolução Molecular - LEEM, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brazil
| | - Wanderli Pedro Tadei
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva - GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brazil; Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brazil
| |
Collapse
|