1
|
Kanwal S, Osman EY, Khiari I. Comprehensive review of dermatological and cosmeceutical manifestations of thermal water and future insights. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025:10.1007/s00484-025-02937-0. [PMID: 40423748 DOI: 10.1007/s00484-025-02937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/22/2025] [Accepted: 04/27/2025] [Indexed: 05/28/2025]
Abstract
Balneotherapy is a widely accepted and well-practiced treatment modality for dermatological diseases in many countries worldwide. The use of balneotherapy approaches for skin disease management is continuously increasing, but the mechanism by which thermal water affects the treatment of different dermatological conditions has not been fully explored. This comprehensive review seeks to consolidate scientific findings regarding the effects of thermal water in the treatment of different skin diseases, such as psoriasis, atopic dermatitis, acne, ichthyosis, and lichen planus, as well as its cosmeceutical effects, drawing from both in vitro and in vivo research. This review analyzed both in vitro and in vivo studies to validate the anti-inflammatory, immunomodulatory, and antioxidant potential of thermal water in dermatology. Thermal water exhibits these properties, making it beneficial for treating various skin conditions and enhancing cosmeceutical effects." Many studies have strongly demonstrated the therapeutic benefits of different thermal waters for the successful treatment of many skin diseases, and these materials have been incorporated into cosmetics for skin hydration and anti-aging and anti-wrinkle effects. The physicochemical and microbial characteristics of thermal water contribute to its therapeutic properties, with sulfurous water being particularly effective due to their favorable mineral composition and antioxidative effects.Although the cosmetic properties of thermal water are well described, further research is needed to identify specific mineral and microbial profiles for incorporation into cosmetic products and to integrate advanced technologies and approaches to increase the effectiveness of formulated products. Should aim to clarify the underlying mechanisms of action of thermal waters, investigate optimal treatment protocols, and assess their long-term efficacy. Longitudinal clinical trials are also needed to assess the long-term benefits and safety of these treatments, paving the way for standardized protocols in dermatological care.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti - Pescara "G. d'Annunzio", 66100, Chieti, Italy.
| | - Enass Y Osman
- Department of Pharmacology and Toxicology, Tanta University, Tanta, Egypt
| | - Imen Khiari
- Georesources Laboratory of Water Research and Technologies Center (CERTE), Technopole Borj Cedria, BP273, Soliman, Tunisia
| |
Collapse
|
2
|
Milanković V, Djuriš J, Tubić A, Agbaba J, Forkapić S, Lukić M. Assessing the safety of thermal mineral water for cosmetic applications: an integrated approach using physicochemical, cheminformatics, and bioinformatics techniques. RSC Adv 2025; 15:17755-17775. [PMID: 40438892 PMCID: PMC12117533 DOI: 10.1039/d5ra01252j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/15/2025] [Indexed: 06/01/2025] Open
Abstract
Thermal and mineral waters represent a complex multifunctional natural resource that has been used for various purposes throughout human history. The physico-chemical characterization of thermal and mineral waters is a comprehensive process that integrates knowledge and practice from different scientific fields. When used in direct contact with human skin, whether for bathing or for use in topical products, a toxicological analysis of thermal and mineral waters must also be performed. This work is an example of a multidisciplinary approach to investigate the safety of concrete thermal and mineral water from the Pannonian Basin for use in cosmetics. A detailed physicochemical characterization was performed together with the subsequent safety assessment of the final cosmetic product, coupled with cheminformatics and bioinformatics tools used to predict physicochemical properties, pharmacokinetics, determination of descriptors to assess bioactive potential and evaluation of possible biological pathways and interactions. The results show that the tested thermal and mineral water is a promising resource for use in cosmetic products that can help maintain skin integrity and improve its condition. The toxicological evaluation showed that the tested water is acceptable as an ingredient in a face cream for adults, excluding pregnant and breastfeeding women. The results are discussed in detail and guidance and comments on outstanding issues are provided.
Collapse
Affiliation(s)
| | - Jelena Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade Vojvode Stepe 450 Belgrade Serbia
| | - Aleksandra Tubić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovica 3 Novi Sad Serbia
| | - Jasmina Agbaba
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovica 3 Novi Sad Serbia
| | - Sofija Forkapić
- Department of Physics, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovica 3 Novi Sad Serbia
| | - Milica Lukić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade Vojvode Stepe 450 Belgrade Serbia
| |
Collapse
|
3
|
Kuka A, Mileto I, Saler M, Petazzoni G, Corbella M, Baldanti F, Faga A, Nicoletti G. Native Bacterial Communities of Two Italian Salso-Bromo-Jodic and Sulphurous Natural Mineral Waters. Microorganisms 2025; 13:1038. [PMID: 40431211 PMCID: PMC12113723 DOI: 10.3390/microorganisms13051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
A correlation between resident non-pathogenic bacterial populations in certain natural mineral waters and their beneficial effects has been established by several research groups. This study aims to characterize the bacterial composition of the Rivanazzano salso-bromo-jodic and sulphurous mineral waters (Pavia, Italy). Water samples were collected from natural sources and dispensing systems. DNA was extracted and subjected to 16S rRNA gene sequencing. Microbial composition, as well as alpha and beta diversity, were analyzed using amplicon sequence variants and compared across sampling sites. The predominant phyla in both waters were Proteobacteria, Campylobacterota, Bacteroidota, and Desulfobacterota. However, diversity at the family taxonomic level was recorded. In terms of bacterial diversity, waters collected from the dispensing systems within the spa resort were more similar between them than those from natural sources. The therapeutic properties of the Rivanazzano mineral waters are likely to be related to their combined mineral and biological composition.
Collapse
Affiliation(s)
- Angela Kuka
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Irene Mileto
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Saler
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, 27100 Pavia, Italy
- Integrated Unit of Experimental Surgery, Advanced Microsurgery and Regenerative Medicine, University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
| | - Greta Petazzoni
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marta Corbella
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Angela Faga
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Nicoletti
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, 27100 Pavia, Italy
- Integrated Unit of Experimental Surgery, Advanced Microsurgery and Regenerative Medicine, University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Surgery Unit, Azienda Socio-Sanitaria Territoriale di Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Tang B, Shi Y, Zeng Z, He X, Yu J, Chai K, Liu J, Liu L, Zhan Y, Qiu X, Tang R, Xiao Y, Xiao R. Silica's silent threat: Contributing to skin fibrosis in systemic sclerosis by targeting the HDAC4/Smad2/3 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124194. [PMID: 38782158 DOI: 10.1016/j.envpol.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, silica products are widely used in daily life, especially in skin applications, which inevitably increases the risk of silica exposure in general population. However, inadequate awareness of silica's potential hazards and lack of self-protection are of concern. Systemic sclerosis (SSc) is characterized by progressive tissue fibrosis under environmental and genetic interactions. Silica exposure is considered an important causative factor for SSc, but its pathogenesis remains unclear. Within this study, we showed that lower doses of silica significantly promoted the proliferation, migration, and activation of human skin fibroblasts (HSFs) within 24 h. Silica injected subcutaneously into mice induced and exacerbated skin fibrosis. Notably, silica increased histone deacetylase-4 (HDAC4) expression by inducing its DNA hypomethylation in normal HSFs. The elevated HDAC4 expression was also confirmed in SSc HSFs. Furthermore, HDAC4 was positively correlated with Smad2/3 phosphorylation and COL1, α-SMA, and CTGF expression. The HDAC4 inhibitor LMK235 mitigated silica-induced upregulation of these factors and alleviated skin fibrosis in SSc mice. Taken together, silica induces and exacerbates skin fibrosis in SSc patients by targeting the HDAC4/Smad2/3 pathway. Our findings provide new insights for evaluating the health hazards of silica exposure and identify HDAC4 as a potential interventional target for silica-induced SSc skin fibrosis.
Collapse
Affiliation(s)
- Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ke Chai
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Licong Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Viegas J, Cardoso EM, Bonneau L, Esteves AF, Ferreira CL, Alves G, Santos-Silva AJ, Vitale M, Arosa FA, Taborda-Barata L. A Novel Bionebulizer Approach to Study the Effects of Natural Mineral Water on a 3D In Vitro Nasal Model from Allergic Rhinitis Patients. Biomedicines 2024; 12:408. [PMID: 38398010 PMCID: PMC10886703 DOI: 10.3390/biomedicines12020408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sulfurous thermal waters (STWs) are used as a complementary treatment for allergic rhinitis. However, there is scant data on the effects of STW on nasal epithelial cells, and in vitro models are warranted. The main aim of this study was to evaluate the dose and time effects of exposure to 3D nasal inserts (MucilAirTM-HF allergic rhinitis model) with STW or isotonic sodium chloride solution (ISCS) aerosols. Transepithelial electrical resistance (TEER) and histology were assessed before and after nebulizations. Chemokine/cytokine levels in the basal supernatants were assessed by enzyme-linked immunosorbent assay. The results showed that more than four daily nebulizations of four or more minutes compromised the normal epithelial integrity. In contrast, 1 or 2 min of STW or ISCS nebulizations had no toxic effect up to 3 days. No statistically significant changes in release of inflammatory chemokines MCP-1/CCL2 > IL-8/CXCL8 > MIP-1α/CCL3, no meaningful release of "alarmins" (IL-1α, IL-33), nor of anti-inflammatory IL-10 cytokine were observed. We have characterized safe time and dose conditions for aerosol nebulizations using a novel in vitro 3D nasal epithelium model of allergic rhinitis patients. This may be a suitable in vitro setup to mimic in vivo treatments of chronic rhinitis with STW upon triggering an inflammatory stimulus in the future.
Collapse
Affiliation(s)
- Joana Viegas
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Elsa M. Cardoso
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- ESS-IPG-School of Health Sciences, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
| | - Lucile Bonneau
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Ana Filipa Esteves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Catarina L. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - António Jorge Santos-Silva
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Unhais da Serra Thermal Spa, Avenida das Termas, 6215-574 Unhais da Serra, Portugal
| | - Marco Vitale
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, 20132 Milan, Italy;
- FoRST—Fondazione per la Ricerca Scientifica Termale, 00198 Rome, Italy
| | - Fernando A. Arosa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Luís Taborda-Barata
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- UBIAir—Clinical & Experimental Lung Centre, University of Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- CACB—Clinical Academic Centre of Beiras, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Department of Immunoallergology, Cova da Beira University Hospital Centre, Alameda Pêro da Covilhã, 6200-251 Covilhã, Portugal
| |
Collapse
|
6
|
Oliveira AS, Rolo J, Gaspar C, Ramos L, Cavaleiro C, Salgueiro L, Palmeira-de-Oliveira R, Teixeira JP, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Thymus mastichina (L.) L. and Cistus ladanifer L. for skin application: chemical characterization and in vitro bioactivity assessment. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115830. [PMID: 36243295 DOI: 10.1016/j.jep.2022.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thymus mastichina (L.) L. (TM) and Cistus ladanifer L. (CL) are two Portuguese autochthonous species with traditional skin application in folk medicine. TM is majorly known for its antiseptic and wound healing properties, as an external anti-inflammatory agent and for its application in folk cosmetics and hygiene products. Its use in acne vulgaris has also been reported. CL is traditionally used in remedies for wounds, ulcers and other skin ailments such as psoriasis and eczema. Its application has been found useful due to its anti-inflammatory, astringent, wound healing and antiseptic properties. AIM OF THE STUDY With this work, we aimed to investigate relevant bioactivities related with the traditional application of TM and CL essential oils (EOs) and hydrolates (by-products of EO production) in skin ailments. Specifically their in vitro antioxidant, anti-inflammatory, cytotoxic, wound healing and antimicrobial properties were evaluated. The chemical composition of both EOs and respective hydrolates was also characterized. MATERIALS AND METHODS Chemical characterization of EOs and hydrolates was performed by GC-FID and GC-MS. Cellular biocompatibility was evaluated using the MTT assay in macrophages (RAW 264.7) and fibroblasts (L929) cell lines. Anti-inflammatory activity was investigated by studying nitric oxide (NO) production by macrophages with Griess reagent. Wound healing potential was evaluated with the scratch-wound assay. The antioxidant potential was studied by the DPPH scavenging method. Antimicrobial activity was evaluated by broth microdilution assay against relevant microbial strains and skin pathogens, namely Staphylococcus aureus, Staphylococcus epidermidis, Cutibacterium acnes, Pseudomonas aeruginosa, Escherichia coli, Candida albicans and Aspergillus brasiliensis. RESULTS The major compounds present in TM and CL EOs were 1,8-cineole and α-pinene, respectively. 1,8-cineole and E-pinocarveol were the major compounds in the correspondent hydrolates. CL EO presented the highest anti-inflammatory potential [EC50 = 0.002% (v/v)], still with significant cytotoxicity [IC50 = 0.012% (v/v)]. TM preparations presented anti-inflammatory potential, also presenting higher biocompatibility. The same profile was present on fibroblasts regarding biocompatibility of the tested preparations. CL EO and hydrolate increased fibroblasts' migration by 155.7% and 148.4%, respectively. TM hydrolate presented a milder activity than CL hydrolate, but wound healing potential was still present, increasing cell migration by 125.1%. All preparations presented poor antioxidant capacity. CL EO presented higher antimicrobial activity, with MICs ranging from 0.06% (v/v) to 2% (v/v), against different microorganisms. CONCLUSIONS Anti-inflammatory and skin repairing potential were present for CL preparations. TM hydrolate presented an interesting biocompatible profile on both cell lines, also presenting anti-inflammatory potential. Furthermore, EOs from both species presented antimicrobial activity against a panel of different microorganisms. These in vitro bioactivities support some of their traditional skin applications, specifically regarding their antiseptic, wound healing and anti-inflammatory uses.
Collapse
Affiliation(s)
- Ana S Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Joana Rolo
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Carlos Gaspar
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| | - Leonor Ramos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Carlos Cavaleiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Rita Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal.
| | - José Martinez-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| |
Collapse
|
7
|
Vaz CV, Oliveira AS, Silva A, Cortes L, Correia S, Ferreira R, Breitenfeld L, Martinez-de-Oliveira J, Palmeira-de-Oliveira R, Pereira CF, Cruz MT, Palmeira-de-Oliveira A. Protective role of Portuguese natural mineral waters on skin aging: in vitro evaluation of anti-senescence and anti-oxidant properties. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2117-2131. [PMID: 35994120 DOI: 10.1007/s00484-022-02345-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Natural mineral waters (NMWs) emerge from the earth as springs and their beneficial therapeutic effect has been empirically recognized in different countries. Portugal has diverse NMW resources that are sought for the relief of different afflictions including dermatological complications. However, there is a lack of scientific validation supporting this empiric knowledge. In this study, we aimed to screen the in vitro bioactivity of Portuguese NMWs with different chemical profiles, namely sulfurous/bicarbonate/sodic (SBS), bicarbonate/magnesium, sulfated/calcic, sulfurous/chlorinated/sodic, sulfurous/bicarbonate/fluoridated/sodic, and chlorinated/sodic, focusing on aging-related skin alterations. Mouse skin fibroblasts and macrophages were exposed to culture medium prepared in different NMWs. Cellular viability was evaluated by MTT assay and etoposide-induced senescence was analyzed through the beta-galactosidase staining kit. Wound healing was investigated by the scratch assay, and phototoxicity/photoprotection after UVA irradiation was evaluated using a neutral red solution. ROS production was quantified using the 2'7'-dichlorofluorescin diacetate dye, and the activity of superoxide dismutase (SOD) was analyzed by a commercial kit after lipopolysaccharide exposure. NMWs within the SBS profile demonstrated anti-senescence activity in skin fibroblasts, along with a variable effect on cellular viability. Among the tested NMWs, two decreased cellular senescence and preserved cell viability and were therefore selected for subsequent studies, together with a SBS NMW with therapeutic indications for dermatologic diseases. Overall, the selected NMW promoted wound healing in skin fibroblasts and activated SOD in macrophages, thus suggesting an anti-oxidant effect. None of the NMWs prevented phototoxicity after UV irradiation. Our results shed a light on the anti-aging potential of Portuguese NMW, supporting their putative application in cosmetic or medical products.
Collapse
Affiliation(s)
- C V Vaz
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - A S Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - A Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - L Cortes
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - S Correia
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - R Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- CEDOC, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - L Breitenfeld
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - J Martinez-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - R Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Labfit-Health Products Research and Development Lda, Ubimedical, Covilhã, Portugal
| | - C F Pereira
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - M T Cruz
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - A Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- Labfit-Health Products Research and Development Lda, Ubimedical, Covilhã, Portugal.
| |
Collapse
|
8
|
Oliveira AS, Rolo J, Gaspar C, Cavaleiro C, Salgueiro L, Palmeira-de-Oliveira R, Ferraz C, Coelho S, Pastorinho MR, Sousa AC, Teixeira JP, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Chemical characterization and bioactive potential of Thymus×citriodorus (Pers.) Schreb. preparations for anti-acne applications: Antimicrobial, anti-biofilm, anti-inflammatory and safety profiles. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114935. [PMID: 34954264 DOI: 10.1016/j.jep.2021.114935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thymus × citriodorus (Pers.) Schreb. is an interspecific hybrid between Thymus pulegioides and Thymus vulgaris, known for its pharmacological activities as diaphoretic, deodorant, antiseptic and disinfectant, the last mostly related with its antimicrobial activity. The folk use of other extracts, as hydrolates, have also been disseminated, as regulators of oily skin with anti-acne effect. AIM OF THE STUDY We aimed to evaluate the anti-acne potential of two Thymus x citriodorus (TC) preparations, the essential oil (EO) and the hydrolate, to be used as active ingredients for skin applications. Specifically, we intend to validate their anti-acne potential by describing their activity on acne related bacteria, bacterial virulence, anti-oxidant and anti-inflammatory potential, and biocompatibility on inflammatory cells. Additionally, we aimed to report their ecotoxicity under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), thus focusing not only on the consumer, but also on environmental safety assessment. MATERIALS AND METHODS Minimum inhibitory concentration (MIC) against C. acnes, S. aureus and S. epidermidis was evaluated. Minimum lethal concentration (MLC) was also determined. The effect on C. acnes biofilm formation and disruption was evaluated with crystal violet staining. Anti-inflammatory activity was investigated on LPS-stimulated mouse macrophages (RAW 264.7), by studying nitric oxide (NO) production (Griess reagent) and cellular biocompatibility through MTT assay. In-vitro NO and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging potential were also evaluated. The ecotoxicity was evaluated using Daphnia magna acute toxicity assays. RESULTS EO presented direct antimicrobial activity, with visual MICs ranging from 0.06% for S. epidermidis and C. acnes to 0.125% for S. aureus. MLCs were higher than the obtained MICs. Hydrolate revealed visual MIC only for C. acnes. TC essential oil was effective in preventing biofilm formation and disrupting preformed biofilms even at sub-inhibitory concentrations. Hydrolate showed a more modest anti-biofilm effect. Regarding anti-inflammatory activity, TC hydrolate has a higher cellular biocompatibility. Still, both plant preparations were able to inhibit at least 50% of NO production at non-cytotoxic concentrations. Both EO and hydrolate have poor anti-oxidant activities. Regarding the ecotoxicity, TC essential oil was classified under acute 3 category, while the hydrolate has proved to be nontoxic, in accordance to the GHS. CONCLUSIONS These results support the anti-acne value of different TC preparations for different applications. TC hydrolate by presenting higher biocompatibility, anti-inflammatory potential and the ability to modulate C. acnes virulence, can be advantageous in a product for everyday application. On the other hand, EO by presenting a marked antimicrobial, anti-biofilm and anti-inflammatory activities, still with some cytotoxicity, may be better suited for application in acute flare-ups, for short treatment periods.
Collapse
Affiliation(s)
- Ana S Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Joana Rolo
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Carlos Gaspar
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| | - Carlos Cavaleiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Rita Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal; CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504, Coimbra, Portugal.
| | - Celso Ferraz
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Susana Coelho
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - M Ramiro Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Department of Medical and Health Sciences, University of Évora, Évora, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal.
| | - Ana Catarina Sousa
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal; Department of Biology, University of Évora, Évora, Portugal.
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal.
| | - José Martinez-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| |
Collapse
|
9
|
Abstract
In recent years, natural thermal mineral waters have been gaining the special attention of the scientific community, namely in the prevention and treatment of some diseases, due to the microbial properties that exist in these habitats. The aim of this work was to characterize the physicochemical composition and the microbial taxonomic communities present in three thermal waters of the Galician region in Spain and two samples of the northern region in Portugal. These collected water samples were analyzed for physicochemical characterization and the respective hydrogenome of the waters using next generation sequencing together with 16S rRNA gene sequencing. The sequencing showed a high diversity of microorganisms in all analyzed waters; however, there is a clear bacterial predominance of Proteobacteria phylum, followed by Firmicutes, Deinococcus-Thermus, Aquificae and Nitrospira. The main physicochemical parameters responsible for the clustering within the Spanish waters were sulfur compounds (SO32− and S2−), CO32− and neutral pH, and in the Portuguese waters were Mg, Ca and Sr, nitrogen compounds (NO3− and NH4+), Na, Rb, conductivity and dry residue. This work will allow for a better understanding of the microbial community’s composition and how these microorganisms interfere in the physicochemical constitution of these waters often associated with medicinal properties. Furthermore, the hydrogenome may be used as an auxiliary tool in the practice of medical hydrology, increasing the likelihood of safe use of these unique water types.
Collapse
|