1
|
Brainard SH, Sanders DM, Bruna T, Shu S, Dawson JC. The first two chromosome-scale genome assemblies of American hazelnut enable comparative genomic analysis of the genus Corylus. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:472-483. [PMID: 37870930 PMCID: PMC10826982 DOI: 10.1111/pbi.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
The native, perennial shrub American hazelnut (Corylus americana) is cultivated in the Midwestern United States for its significant ecological benefits, as well as its high-value nut crop. Implementation of modern breeding methods and quantitative genetic analyses of C. americana requires high-quality reference genomes, a resource that is currently lacking. We therefore developed the first chromosome-scale assemblies for this species using the accessions 'Rush' and 'Winkler'. Genomes were assembled using HiFi PacBio reads and Arima Hi-C data, and Oxford Nanopore reads and a high-density genetic map were used to perform error correction. N50 scores are 31.9 Mb and 35.3 Mb, with 90.2% and 97.1% of the total genome assembled into the 11 pseudomolecules, for 'Rush' and 'Winkler', respectively. Gene prediction was performed using custom RNAseq libraries and protein homology data. 'Rush' has a BUSCO score of 99.0 for its assembly and 99.0 for its annotation, while 'Winkler' had corresponding scores of 96.9 and 96.5, indicating high-quality assemblies. These two independent assemblies enable unbiased assessment of structural variation within C. americana, as well as patterns of syntenic relationships across the Corylus genus. Furthermore, we identified high-density SNP marker sets from genotyping-by-sequencing data using 1343 C. americana, C. avellana and C. americana × C. avellana hybrids, in order to assess population structure in natural and breeding populations. Finally, the transcriptomes of these assemblies, as well as several other recently published Corylus genomes, were utilized to perform phylogenetic analysis of sporophytic self-incompatibility (SSI) in hazelnut, providing evidence of unique molecular pathways governing self-incompatibility in Corylus.
Collapse
Affiliation(s)
- Scott H. Brainard
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Dean M. Sanders
- University of Wisconsin Biotechnology CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tomas Bruna
- U.S. Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Julie C. Dawson
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
2
|
Vieira J, Pimenta J, Gomes A, Laia J, Rocha S, Heitzler P, Vieira CP. The identification of the Rosa S-locus and implications on the evolution of the Rosaceae gametophytic self-incompatibility systems. Sci Rep 2021; 11:3710. [PMID: 33580108 PMCID: PMC7881130 DOI: 10.1038/s41598-021-83243-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
In Rosaceae species, two gametophytic self-incompatibility (GSI) mechanisms are described, the Prunus self-recognition system and the Maleae (Malus/Pyrus/Sorbus) non-self- recognition system. In both systems the pistil component is a S-RNase gene, but from two distinct phylogenetic lineages. The pollen component, always a F-box gene(s), in the case of Prunus is a single gene, and in Maleae there are multiple genes. Previously, the Rosa S-locus was mapped on chromosome 3, and three putative S-RNase genes were identified in the R. chinensis ‘Old Blush’ genome. Here, we show that these genes do not belong to the S-locus region. Using R. chinensis and R. multiflora genomes and a phylogenetic approach, we identified the S-RNase gene, that belongs to the Prunus S-lineage. Expression patterns support this gene as being the S-pistil. This gene is here also identified in R. moschata, R. arvensis, and R. minutifolia low coverage genomes, allowing the identification of positively selected amino acid sites, and thus, further supporting this gene as the S-RNase. Furthermore, genotype–phenotype association experiments also support this gene as the S-RNase. For the S-pollen GSI component we find evidence for multiple F-box genes, that show the expected expression pattern, and evidence for diversifying selection at the F-box genes within an S-haplotype. Thus, Rosa has a non-self-recognition system, like in Maleae species, despite the S-pistil gene belonging to the Prunus S-RNase lineage. These findings are discussed in the context of the Rosaceae GSI evolution. Knowledge on the Rosa S-locus has practical implications since genes controlling floral and other ornamental traits are in linkage disequilibrium with the S-locus.
Collapse
Affiliation(s)
- J Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - J Pimenta
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - A Gomes
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - J Laia
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - S Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - P Heitzler
- Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, UPR 2357, 67000, Strasbourg, France
| | - C P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
3
|
Vieira J, Rocha S, Vázquez N, López-Fernández H, Fdez-Riverola F, Reboiro-Jato M, Vieira CP. Predicting Specificities Under the Non-self Gametophytic Self-Incompatibility Recognition Model. FRONTIERS IN PLANT SCIENCE 2019; 10:879. [PMID: 31379893 PMCID: PMC6649718 DOI: 10.3389/fpls.2019.00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Non-self gametophytic self-incompatibility (GSI) recognition system is characterized by the presence of multiple F-box genes tandemly located in the S-locus, that regulate pollen specificity. This reproductive barrier is present in Solanaceae, Plantaginacea and Maleae (Rosaceae), but only in Petunia functional assays have been performed to get insight on how this recognition mechanism works. In this system, each of the encoded S-pollen proteins (called SLFs in Solanaceae and Plantaginaceae /SFBBs in Maleae) recognizes and interacts with a sub-set of non-self S-pistil proteins, called S-RNases, mediating their ubiquitination and degradation. In Petunia there are 17 SLF genes per S-haplotype, making impossible to determine experimentally each SLF specificity. Moreover, domain -swapping experiments are unlikely to be performed in large scale to determine S-pollen and S-pistil specificities. Phylogenetic analyses of the Petunia SLFs and those from two Solanum genomes, suggest that diversification of SLFs predate the two genera separation. Here we first identify putative SLF genes from nine Solanum and 10 Nicotiana genomes to determine how many gene lineages are present in the three genera, and the rate of origin of new SLF gene lineages. The use of multiple genomes per genera precludes the effect of incompleteness of the genome at the S-locus. The similar number of gene lineages in the three genera implies a comparable effective population size for these species, and number of specificities. The rate of origin of new specificities is one per 10 million years. Moreover, here we determine the amino acids positions under positive selection, those involved in SLF specificity recognition, using 10 Petunia S-haplotypes with more than 11 SLF genes. These 16 amino acid positions account for the differences of self-incompatible (SI) behavior described in the literature. When SLF and S-RNase proteins are divided according to the SI behavior, and the positively selected amino acids classified according to hydrophobicity, charge, polarity and size, we identified fixed differences between SI groups. According to the in silico 3D structure of the two proteins these amino acid positions interact. Therefore, this methodology can be used to infer SLF/S-RNase specificity recognition.
Collapse
Affiliation(s)
- Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Noé Vázquez
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - Hugo López-Fernández
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Florentino Fdez-Riverola
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Miguel Reboiro-Jato
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Pratas MI, Aguiar B, Vieira J, Nunes V, Teixeira V, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP. Inferences on specificity recognition at the Malus×domestica gametophytic self-incompatibility system. Sci Rep 2018; 8:1717. [PMID: 29379047 PMCID: PMC5788982 DOI: 10.1038/s41598-018-19820-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
In Malus × domestica (Rosaceae) the product of each SFBB gene (the pollen component of the gametophytic self-incompatibility (GSI) system) of a S-haplotype (the combination of pistil and pollen genes that are linked) interacts with a sub-set of non-self S-RNases (the pistil component), but not with the self S-RNase. To understand how the Malus GSI system works, we identified 24 SFBB genes expressed in anthers, and determined their gene sequence in nine M. domestica cultivars. Expression of these SFBBs was not detected in the petal, sepal, filament, receptacle, style, stigma, ovary or young leaf. For all SFBBs (except SFBB15), identical sequences were obtained only in cultivars having the same S-RNase. Linkage with a particular S-RNase was further established using the progeny of three crosses. Such data is needed to understand how other genes not involved in GSI are affected by the S-locus region. To classify SFBBs specificity, the amino acids under positive selection obtained when performing intra-haplotypic analyses were used. Using this information and the previously identified S-RNase positively selected amino acid sites, inferences are made on the S-RNase amino acid properties (hydrophobicity, aromatic, aliphatic, polarity, and size), at these positions, that are critical features for GSI specificity determination.
Collapse
Affiliation(s)
- Maria I Pratas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Nunes
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Teixeira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Nuno A Fonseca
- European Bioinformatics Institute (EMBL-EBI,) Welcome Trust Genome Campus, CB10 1SD, Cambridge, United Kingdom
| | - Amy Iezzoni
- Michigan State University, East Lansing, MI, 48824-1325, USA
| | | | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
5
|
Lanaud C, Fouet O, Legavre T, Lopes U, Sounigo O, Eyango MC, Mermaz B, Da Silva MR, Loor Solorzano RG, Argout X, Gyapay G, Ebaiarrey HE, Colonges K, Sanier C, Rivallan R, Mastin G, Cryer N, Boccara M, Verdeil JL, Efombagn Mousseni IB, Peres Gramacho K, Clément D. Deciphering the Theobroma cacao self-incompatibility system: from genomics to diagnostic markers for self-compatibility. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4775-4790. [PMID: 29048566 PMCID: PMC5853246 DOI: 10.1093/jxb/erx293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/31/2017] [Indexed: 05/26/2023]
Abstract
Cocoa self-compatibility is an important yield factor and has been described as being controlled by a late gameto-sporophytic system expressed only at the level of the embryo sac. It results in gametic non-fusion and involves several loci. In this work, we identified two loci, located on chromosomes 1 and 4 (CH1 and CH4), involved in cocoa self-incompatibility by two different processes. Both loci are responsible for gametic selection, but only one (the CH4 locus) is involved in the main fruit drop. The CH1 locus acts prior to the gamete fusion step and independently of the CH4 locus. Using fine-mapping and genome-wide association studies, we focused analyses on restricted regions and identified candidate genes. Some of them showed a differential expression between incompatible and compatible reactions. Immunolocalization experiments provided evidence of CH1 candidate genes expressed in ovule and style tissues. Highly polymorphic simple sequence repeat (SSR) diagnostic markers were designed in the CH4 region that had been identified by fine-mapping. They are characterized by a strong linkage disequilibrium with incompatibility alleles, thus allowing the development of efficient diagnostic markers predicting self-compatibility and fruit setting according to the presence of specific alleles or genotypes. SSR alleles specific to self-compatible Amelonado and Criollo varieties were also identified, thus allowing screening for self-compatible plants in cocoa populations.
Collapse
Affiliation(s)
- Claire Lanaud
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Olivier Fouet
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Thierry Legavre
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Uilson Lopes
- Centro de Pesquisas do Cacau (CEPEC), CEPLAC, Rod. Ilhéus-Itabuna, Ilhéus, BA, Brazil
| | - Olivier Sounigo
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UR Bioagresseurs, Elig-Essono, Yaoundé, Cameroun
- Institut de Recherche Agricole pour le Developpement (IRAD), Yaoundé, Cameroun
| | - Marie Claire Eyango
- Institut de Recherche Agricole pour le Developpement (IRAD), Yaoundé, Cameroun
| | - Benoit Mermaz
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Marcos Ramos Da Silva
- Centro de Pesquisas do Cacau (CEPEC), CEPLAC, Rod. Ilhéus-Itabuna, Ilhéus, BA, Brazil
| | - Rey Gaston Loor Solorzano
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), EET-Pichilingue. CP 24 Km 5 vía Quevedo El Empalme, Quevedo, Los Ríos, Ecuador
| | - Xavier Argout
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Gabor Gyapay
- Commissariat à l’Energie Antomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | | | - Kelly Colonges
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Christine Sanier
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Ronan Rivallan
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Géraldine Mastin
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Nicholas Cryer
- Mondelez UK R&D Limited, Bournville Place, Bournville Lane, Birmingham, UK
| | - Michel Boccara
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Jean-Luc Verdeil
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | | | - Karina Peres Gramacho
- Centro de Pesquisas do Cacau (CEPEC), CEPLAC, Rod. Ilhéus-Itabuna, Ilhéus, BA, Brazil
| | - Didier Clément
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
- Centro de Pesquisas do Cacau (CEPEC), CEPLAC, Rod. Ilhéus-Itabuna, Ilhéus, BA, Brazil
| |
Collapse
|
6
|
Niu SC, Huang J, Zhang YQ, Li PX, Zhang GQ, Xu Q, Chen LJ, Wang JY, Luo YB, Liu ZJ. Lack of S-RNase-Based Gametophytic Self-Incompatibility in Orchids Suggests That This System Evolved after the Monocot-Eudicot Split. FRONTIERS IN PLANT SCIENCE 2017; 8:1106. [PMID: 28690630 PMCID: PMC5479900 DOI: 10.3389/fpls.2017.01106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/07/2017] [Indexed: 05/25/2023]
Abstract
Self-incompatibility (SI) is found in approximately 40% of flowering plant species and at least 100 families. Although orchids belong to the largest angiosperm family, only 10% of orchid species present SI and have gametophytic SI (GSI). Furthermore, a majority (72%) of Dendrobium species, which constitute one of the largest Orchidaceae genera, show SI and have GSI. However, nothing is known about the molecular mechanism of GSI. The S-determinants of GSI have been well characterized at the molecular level in Solanaceae, Rosaceae, and Plantaginaceae, which use an S-ribonuclease (S-RNase)-based system. Here, we investigate the hypothesis that Orchidaceae uses a similar S-RNase to those described in Rosaceae, Solanaceae, and Plantaginaceae SI species. In this study, two SI species (Dendrobium longicornu and D. chrysanthum) were identified using fluorescence microscopy. Then, the S-RNase- and SLF-interacting SKP1-like1 (SSK1)-like genes present in their transcriptomes and the genomes of Phalaenopsis equestris, D. catenatum, Vanilla shenzhenica, and Apostasia shenzhenica were investigated. Sequence, phylogenetic, and tissue-specific expression analyses revealed that none of the genes identified was an S-determinant, suggesting that Orchidaceae might have a novel SI mechanism. The results also suggested that RNase-based GSI might have evolved after the split of monocotyledons (monocots) and dicotyledons (dicots) but before the split of Asteridae and Rosidae. This is also the first study to investigate S-RNase-based GSI in monocots. However, studies on gene identification, differential expression, and segregation analyses in controlled crosses are needed to further evaluate the genes with high expression levels in GSI tissues.
Collapse
Affiliation(s)
- Shan-Ce Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Graduate University of the Chinese Academy of SciencesBeijing, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Jie Huang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Yong-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Pei-Xing Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Guo-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Qing Xu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Li-Jun Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Jie-Yu Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Yi-Bo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
- The Centre for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua UniversityShenzhen, China
- College of Forestry and Landscape Architecture, South China Agricultural UniversityGuangzhou, China
- College of Arts, College of Landscape Architecture, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
7
|
Ma Y, Li Q, Hu G, Qin Y. Comparative transcriptional survey between self-incompatibility and self-compatibility in Citrus reticulata Blanco. Gene 2017; 609:52-61. [PMID: 28137595 DOI: 10.1016/j.gene.2017.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 11/27/2022]
Abstract
Seedlessness is an excellent economical trait, and self-incompatibility (SI) is one of important factors resulting in seedless fruit in Citrus. However, SI molecular mechanism in Citrus is still unclear. In this study, RNA-Seq technology was used to identify differentially expressed genes related to SI reaction of 'Wuzishatangju' (Citrus reticulata Blanco). A total of 35.67GB raw RNA-Seq data was generated and was de novo assembled into 50,364 unigenes with an average length of 897bp and N50 value of 1549. Twenty-three candidate unigenes related to SI were analyzed using qPCR at different tissues and stages after self- and cross-pollination. Seven pollen S genes (Unigene0050323, Unigene0001060, Unigene0004230, Unigene0004222, Unigene0012037, Unigene0048889 and Unigene0004272), three pistil S genes (Unigene0019191, Unigene0040115, Unigene0036542) and three genes (Unigene0038751, Unigene0031435 and Unigene0029897) associated with the pathway of ubiquitin-mediated proteolysis were identified. Unigene0031435, Unigene0038751 and Unigene0029897 are probably involved in SI reaction of 'Wuzishatangju' based on expression analyses. The present study provides a new insight into the molecular mechanism of SI in Citrus at the transcriptional level.
Collapse
Affiliation(s)
- Yuewen Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qiulei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Aguiar B, Vieira J, Cunha AE, Vieira CP. No evidence for Fabaceae Gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. BMC PLANT BIOLOGY 2015; 15:129. [PMID: 26032621 PMCID: PMC4451870 DOI: 10.1186/s12870-015-0497-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/20/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fabaceae species are important in agronomy and livestock nourishment. They have a long breeding history, and most cultivars have lost self-incompatibility (SI), a genetic barrier to self-fertilization. Nevertheless, to improve legume crop breeding, crosses with wild SI relatives of the cultivated varieties are often performed. Therefore, it is fundamental to characterize Fabaceae SI system(s). We address the hypothesis of Fabaceae gametophytic (G)SI being RNase based, by recruiting the same S-RNase lineage gene of Rosaceae, Solanaceae or Plantaginaceae SI species. RESULTS We first identify SSK1 like genes (described only in species having RNase based GSI), in the Trifolium pratense, Medicago truncatula, Cicer arietinum, Glycine max, and Lupinus angustifolius genomes. Then, we characterize the S-lineage T2-RNase genes in these genomes. In T. pratense, M. truncatula, and C. arietinum we identify S-RNase lineage genes that in phylogenetic analyses cluster with Pyrinae S-RNases. In M. truncatula and C. arietinum genomes, where large scaffolds are available, these sequences are surrounded by F-box genes that in phylogenetic analyses also cluster with S-pollen genes. In T. pratense the S-RNase lineage genes show, however, expression in tissues not involved in GSI. Moreover, levels of diversity are lower than those observed for other S-RNase genes. The M. truncatula and C. arietinum S-RNase and S-pollen like genes phylogenetically related to Pyrinae S-genes, are also expressed in tissues other than those involved in GSI. To address if other T2-RNases could be determining Fabaceae GSI, here we obtained a style with stigma transcriptome of Cytisus striatus, a species that shows significant difference on the percentage of pollen growth in self and cross-pollinations. Expression and polymorphism analyses of the C. striatus S-RNase like genes revealed that none of these genes, is the S-pistil gene. CONCLUSION We find no evidence for Fabaceae GSI being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. There is no evidence that T2-RNase lineage genes could be determining GSI in C. striatus. Therefore, to characterize the Fabaceae S-pistil gene(s), expression analyses, levels of diversity, and segregation analyses in controlled crosses are needed for those genes showing high expression levels in the tissues where GSI occurs.
Collapse
Affiliation(s)
- Bruno Aguiar
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| | - Ana E Cunha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| |
Collapse
|
9
|
George JP, Konrad H, Collin E, Thevenet J, Ballian D, Idzojtic M, Kamm U, Zhelev P, Geburek T. High molecular diversity in the true service tree (Sorbus domestica) despite rareness: data from Europe with special reference to the Austrian occurrence. ANNALS OF BOTANY 2015; 115:1105-1115. [PMID: 25878141 PMCID: PMC4648458 DOI: 10.1093/aob/mcv047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/04/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND AIMS Sorbus domestica (Rosaceae) is one of the rarest deciduous tree species in Europe and is characterized by a scattered distribution. To date, no large-scale geographic studies on population genetics have been carried out. Therefore, the aims of this study were to infer levels of molecular diversity across the major part of the European distribution of S. domestica and to determine its population differentiation and structure. In addition, spatial genetic structure was examined together with the patterns of historic and recent gene flow between two adjacent populations. METHODS Leaf or cambium samples were collected from 17 populations covering major parts of the European native range from north-west France to south-east Bulgaria. Seven nuclear microsatellites and one chloroplast minisatellite were examined and analysed using a variety of methods. KEY RESULTS Allelic richness was unexpectedly high for both markers within populations (mean per locus: 3·868 for nSSR and 1·647 for chloroplast minisatellite). Moreover, there was no evidence of inbreeding (mean Fis = -0·047). The Italian Peninsula was characterized as a geographic region with comparatively high genetic diversity for both genomes. Overall population differentiation was moderate (FST = 0·138) and it was clear that populations formed three groups in Europe, namely France, Mediterranean/Balkan and Austria. Historic gene flow between two local Austrian populations was high and asymmetric, while recent gene flow seemed to be disrupted. CONCLUSIONS It is concluded that molecular mechanisms such as self-incompatibility and high gene flow distances are responsible for the observed level of allelic richness as well as for population differentiation. However, human influence could have contributed to the present genetic pattern, especially in the Mediterranean region. Comparison of historic and recent gene flow may mirror the progress of habitat fragmentation in eastern Austria.
Collapse
Affiliation(s)
- Jan-Peter George
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Heino Konrad
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Eric Collin
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Jean Thevenet
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Dalibor Ballian
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Marilena Idzojtic
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Urs Kamm
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Peter Zhelev
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Thomas Geburek
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| |
Collapse
|
10
|
Aguiar B, Vieira J, Cunha AE, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP. Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus. PLoS One 2015; 10:e0126138. [PMID: 25993016 PMCID: PMC4438004 DOI: 10.1371/journal.pone.0126138] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/30/2015] [Indexed: 12/24/2022] Open
Abstract
S-RNase-based gametophytic self-incompatibility (GSI) has evolved once before the split of the Asteridae and Rosidae. This conclusion is based on the phylogenetic history of the S-RNase that determines pistil specificity. In Rosaceae, molecular characterizations of Prunus species, and species from the tribe Pyreae (i.e., Malus, Pyrus, Sorbus) revealed different numbers of genes determining S-pollen specificity. In Prunus only one pistil and pollen gene determine GSI, while in Pyreae there is one pistil but multiple pollen genes, implying different specificity recognition mechanisms. It is thus conceivable that within Rosaceae the genes involved in GSI in the two lineages are not orthologous but possibly paralogous. To address this hypothesis we characterised the S-RNase lineage and S-pollen lineage genes present in the genomes of five Rosaceae species from three genera: M. × domestica (apple, self-incompatible (SI); tribe Pyreae), P. persica (peach, self-compatible (SC); Amygdaleae), P. mume (mei, SI; Amygdaleae), Fragaria vesca (strawberry, SC; Potentilleae), and F. nipponica (mori-ichigo, SI; Potentilleae). Phylogenetic analyses revealed that the Malus and Prunus S-RNase and S-pollen genes belong to distinct gene lineages, and that only Prunus S-RNase and SFB-lineage genes are present in Fragaria. Thus, S-RNase based GSI system of Malus evolved independently from the ancestral system of Rosaceae. Using expression patterns based on RNA-seq data, the ancestral S-RNase lineage gene is inferred to be expressed in pistils only, while the ancestral S-pollen lineage gene is inferred to be expressed in tissues other than pollen.
Collapse
Affiliation(s)
- Bruno Aguiar
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana E. Cunha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno A. Fonseca
- CRACS-INESC Porto, Rua do Campo Alegre 1021/1055, 4169–007, Porto, Portugal
- European Bioinformatics Institute (EMBL-EBI), Welcome Trust Genome Campus, CB10 1SD, Cambridge, United Kingdom
| | - Amy Iezzoni
- Michigan State University, East Lansing, Michigan, United States of America
| | - Steve van Nocker
- Michigan State University, East Lansing, Michigan, United States of America
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
11
|
Okada K, Moriya S, Haji T, Abe K. Isolation and characterization of multiple F-box genes linked to the S9- and S10-RNase in apple (Malus × domestica Borkh.). PLANT REPRODUCTION 2013; 26:101-111. [PMID: 23686223 DOI: 10.1007/s00497-013-0212-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/28/2013] [Indexed: 06/02/2023]
Abstract
Using 11 consensus primer pairs designed from S-linked F-box genes of apple and Japanese pear, 10 new F-box genes (MdFBX21 to 30) were isolated from the apple cultivar 'Spartan' (S(9)S(10)). MdFBX21 to 23 and MdFBX24 to 30 were completely linked to the S(9) -RNase and S(10-)RNase, respectively, and showed pollen-specific expression and S-haplotype-specific polymorphisms. Therefore, these 10 F-box genes are good candidates for the pollen determinant of self-incompatibility in apple. Phylogenetic analysis and comparison of deduced amino acid sequences of MdFBX21 to 30 with those of 25 S-linked F-box genes previously isolated from apple showed that a deduced amino acid identity of greater than 88.0 % can be used as the tentative criterion to classify F-box genes into one type. Using this criterion, 31 of 35 F-box genes of apple were classified into 11 types (SFBB1-11). All types included F-box genes derived from S(3-) and S(9-)haplotypes, and seven types included F-box genes derived from S(3-), S(9-), and S(10-)haplotypes. Moreover, comparison of nucleotide sequences of S-RNases and multiple F-box genes among S(3-), S(9-), and S(10-)haplotypes suggested that F-box genes within each type showed high nucleotide identity regardless of the identity of the S-RNase. The large number of F-box genes as candidates for the pollen determinant and the high degree of conservation within each type are consistent with the collaborative non-self-recognition model reported for Petunia. These findings support that the collaborative non-self-recognition system also exists in apple.
Collapse
Affiliation(s)
- Kazuma Okada
- Apple Research Station, NARO Institute of Fruit Tree Science, Morioka, Iwate, 020-0123, Japan.
| | | | | | | |
Collapse
|
12
|
Aguiar B, Vieira J, Cunha AE, Fonseca NA, Reboiro-Jato D, Reboiro-Jato M, Fdez-Riverola F, Raspé O, Vieira CP. Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2423-34. [PMID: 23606363 PMCID: PMC3654429 DOI: 10.1093/jxb/ert098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
S-RNase-based gametophytic self-incompatibility evolved once before the split of the Asteridae and Rosidae. In Prunus (tribe Amygdaloideae of Rosaceae), the self-incompatibility S-pollen is a single F-box gene that presents the expected evolutionary signatures. In Malus and Pyrus (subtribe Pyrinae of Rosaceae), however, clusters of F-box genes (called SFBBs) have been described that are expressed in pollen only and are linked to the S-RNase gene. Although polymorphic, SFBB genes present levels of diversity lower than those of the S-RNase gene. They have been suggested as putative S-pollen genes, in a system of non-self recognition by multiple factors. Subsets of allelic products of the different SFBB genes interact with non-self S-RNases, marking them for degradation, and allowing compatible pollinations. This study performed a detailed characterization of SFBB genes in Sorbus aucuparia (Pyrinae) to address three predictions of the non-self recognition by multiple factors model. As predicted, the number of SFBB genes was large to account for the many S-RNase specificities. Secondly, like the S-RNase gene, the SFBB genes were old. Thirdly, amino acids under positive selection-those that could be involved in specificity determination-were identified when intra-haplotype SFBB genes were analysed using codon models. Overall, the findings reported here support the non-self recognition by multiple factors model.
Collapse
Affiliation(s)
- Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| | - Ana E. Cunha
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| | - Nuno A. Fonseca
- CRACS-INESC Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
| | - David Reboiro-Jato
- Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, University of Vigo, 32004 Ourense, Spain
| | - Miguel Reboiro-Jato
- Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, University of Vigo, 32004 Ourense, Spain
| | - Florentino Fdez-Riverola
- Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, University of Vigo, 32004 Ourense, Spain
| | - Olivier Raspé
- National Botanic Garden of Belgium, Domein van Bouchout, B-1860 Meise, Belgium
| | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| |
Collapse
|
13
|
Miao H, Ye Z, Teixeira da Silva JA, Qin Y, Hu G. Identifying differentially expressed genes in pollen from self-incompatible "Wuzishatangju" and self-compatible "Shatangju" mandarins. Int J Mol Sci 2013; 14:8538-55. [PMID: 23595002 PMCID: PMC3645760 DOI: 10.3390/ijms14048538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/02/2013] [Accepted: 04/07/2013] [Indexed: 02/05/2023] Open
Abstract
Self-incompatibility (SI) is one of the important factors that can result in seedless fruit in Citrus. However, the molecular mechanism of SI in Citrus is not yet clear. In this study, two suppression subtractive hybridization (SSH) libraries (forward, F and reverse, R) were constructed to isolate differentially expressed genes in pollen from "Wuzishatangju" (SI) and "Shatangju" (self-compatibility, SC) mandarins. Four hundred and sixty-eight differentially expressed cDNA clones from 2077 positive clones were sequenced and identified. Differentially expressed ESTs are possibly involved in the SI reaction of "Wuzishatangju" by regulating pollen development, kinase activity, ubiquitin pathway, pollen-pistil interaction, and calcium ion binding. Twenty five SI candidate genes were obtained, six of which displayed specific expression patterns in various organs and stages after self- and cross-pollination. The expression level of the F-box gene (H304) and S1 (F78) in the pollen of "Wuzishatangju" was 5-fold higher than that in "Shatangju" pollen. The F-box gene, S1, UBE2, UBE3, RNaseHII, and PCP were obviously up-regulated in pistils at 3 d after self-pollination of "Wuzishatangju", approximately 3-, 2-, 10-, 5-, 5-, and 2-fold higher, respectively than that at the same stage after cross-pollination of "Wuzishatangju" × "Shatangju" pistils. The potential involvement of these genes in the pollen SI reaction of "Wuzishatangju" is discussed.
Collapse
Affiliation(s)
- Hongxia Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Zixing Ye
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Jaime A. Teixeira da Silva
- Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Ikenobe, Kagawa 761-0795, Japan; E-Mail:
| | - Yonghua Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| |
Collapse
|
14
|
De Franceschi P, Dondini L, Sanzol J. Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4015-32. [PMID: 22563122 DOI: 10.1093/jxb/ers108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The molecular bases of the gametophytic self-incompatibility (GSI) system of species of the subtribe Pyrinae (Rosaceae), such as apple and pear, have been widely studied in the last two decades. The characterization of S-locus genes and of the mechanisms underlying pollen acceptance or rejection have been topics of major interest. Besides the single pistil-side S determinant, the S-RNase, multiple related S-locus F-box genes seem to be involved in the determination of pollen S specificity. Here, we collect and review the state of the art of GSI in the Pyrinae. We emphasize recent genomic data that have contributed to unveiling the S-locus structure of the Pyrinae, and discuss their consistency with the models of self-recognition that have been proposed for Prunus and the Solanaceae. Experimental data suggest that the mechanism controlling pollen-pistil recognition specificity of the Pyrinae might fit well with the collaborative 'non-self' recognition system proposed for Petunia (Solanaceae), whereas it presents relevant differences with the mechanism exhibited by the species of the closely related genus Prunus, which uses a single evolutionarily divergent F-box gene as the pollen S determinant. The possible involvement of multiple pollen S genes in the GSI system of Pyrinae, still awaiting experimental confirmation, opens up new perspectives to our understanding of the evolution of S haplotypes, and of the evolution of S-RNase-based GSI within the Rosaceae family. Whereas S-locus genes encode the players determining self-recognition, pollen rejection in the Pyrinae seems to involve a complex cascade of downstream cellular events with significant similarities to programmed cell death.
Collapse
Affiliation(s)
- Paolo De Franceschi
- Dipartimento di Colture Arboree (DCA), Università degli Studi di Bologna, Via Giuseppe Fanin 46, 40127 Bologna, Italy.
| | | | | |
Collapse
|
15
|
Okada K, Tonaka N, Taguchi T, Ichikawa T, Sawamura Y, Nakanishi T, Takasaki-Yasuda T. Related polymorphic F-box protein genes between haplotypes clustering in the BAC contig sequences around the S-RNase of Japanese pear. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1887-902. [PMID: 21172811 PMCID: PMC3060677 DOI: 10.1093/jxb/erq381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Most fruit trees in the Rosaceae exhibit self-incompatibility, which is controlled by the pistil S gene, encoding a ribonuclease (S-RNase), and the pollen S gene at the S-locus. The pollen S in Prunus is an F-box protein gene (SLF/SFB) located near the S-RNase, but it has not been identified in Pyrus and Malus. In the Japanese pear, various F-box protein genes (PpSFBB(-α-γ)) linked to the S-RNase are proposed as the pollen S candidate. Two bacterial artificial chromosome (BAC) contigs around the S-RNase genes of Japanese pear were constructed, and 649 kb around S(4)-RNase and 378 kb around S(2)-RNase were sequenced. Six and 10 pollen-specific F-box protein genes (designated as PpSFBB(4-u1-u4, 4-d1-d2) and PpSFBB(2-u1-u5,) (2-d1-d5), respectively) were found, but PpSFBB(4-α-γ) and PpSFBB(2-γ) were absent. The PpSFBB(4) genes showed 66.2-93.1% amino acid identity with the PpSFBB(2) genes, which indicated clustering of related polymorphic F-box protein genes between haplotypes near the S-RNase of the Japanese pear. Phylogenetic analysis classified 36 F-box protein genes of Pyrus and Malus into two major groups (I and II), and also generated gene pairs of PpSFBB genes and PpSFBB/Malus F-box protein genes. Group I consisted of gene pairs with 76.3-94.9% identity, while group II consisted of gene pairs with higher identities (>92%) than group I. This grouping suggests that less polymorphic PpSFBB genes in group II are non-S pollen genes and that the pollen S candidates are included in the group I PpSFBB genes.
Collapse
Affiliation(s)
- Kazuma Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Nozomi Tonaka
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Tomio Taguchi
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Takehiko Ichikawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yutaka Sawamura
- National Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605, Japan
| | - Tetsu Nakanishi
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Takeshi Takasaki-Yasuda
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Bosković RI, Sargent DJ, Tobutt KR. Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:755-63. [PMID: 20008462 PMCID: PMC2814107 DOI: 10.1093/jxb/erp340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The self-incompatibility mechanism that reduces inbreeding in many plants of the Rosaceae is attributed to a multi-allelic S locus which, in the Prunoideae and Maloideae subfamilies, comprises two complementary genes, a stylar-expressed S-RNase and a pollen-expressed SFB. To elucidate incompatibility in the subfamily Rosoideae, stylar-specific RNases and self-(in)compatibility status were analysed in various diploid strawberries, especially Fragaria nubicola and F. viridis, both self-incompatible, and F. vesca, self-compatible, and in various progenies derived from them. Unexpectedly, two unlinked RNase loci, S and T, were found, encoding peptides distinct from Prunoideae and Maloideae S-RNases; the presence of a single active allele at either is sufficient to confer self-incompatibility. By contrast, in diploid Maloideae and Prunoideae a single locus encodes S-RNases that share several conserved regions and two active alleles are required for self-incompatibility. Our evidence implicates the S locus in unilateral inter-specific incompatibility and shows that S and T RNases can, remarkably, confer not only allele-specific rejection of cognate pollen but also unspecific rejection of Sn Tn pollen, where n indicates a null allele, consistent with the the presence of the pollen component, SFB, activating the cognitive function of these RNases. Comparison of relevant linkage groups between Fragaria and Prunus suggests that Prunus S-RNases, unique in having two introns, may have resulted from gene conversion in an ancestor of Prunus. In addition, it is shown that there is a non-S locus that is essential for self-incompatibility in diploid Fragaria.
Collapse
Affiliation(s)
- Radovan I Bosković
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK.
| | | | | |
Collapse
|
17
|
Kakeda K. S locus-linked F-box genes expressed in anthers of Hordeum bulbosum. PLANT CELL REPORTS 2009; 28:1453-1460. [PMID: 19636562 DOI: 10.1007/s00299-009-0745-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 05/28/2023]
Abstract
Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.
Collapse
Affiliation(s)
- Katsuyuki Kakeda
- Graduate School of Bioresources, Mie University, Tsu, 514-8507, Japan.
| |
Collapse
|
18
|
Sassa H, Kakui H, Minamikawa M. Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. ACTA ACUST UNITED AC 2009; 23:39-43. [PMID: 20165962 DOI: 10.1007/s00497-009-0111-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/13/2009] [Indexed: 11/29/2022]
Abstract
Many species of Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI) in which pistil-part specificity is controlled by S locus-encoded ribonuclease (S-RNase). Although recent findings revealed that S locus-encoded F-box protein, SLF/SFB, determines pollen-part specificity, how these pistil- and pollen-part S locus products interact in vivo and elicit the SI reaction is largely unclear. Furthermore, genetic studies suggested that pollen S function can differ among species. In Solanaceae and the rosaceous subfamily Maloideae (e.g., apple and pear), the coexistence of two different pollen S alleles in a pollen breaks down SI of the pollen, a phenomenon known as competitive interaction. However, competitive interaction seems not to occur in the subfamily Prunoideae (e.g., cherry and almond) of Rosaceae. Furthermore, the effect of the deletion of pollen S seems to vary among taxa. This review focuses on the potential differences in pollen-part function between subfamilies of Rosaceae, Maloideae, and Prunoideae, and discusses implications for the mechanistic divergence of the S-RNase-based SI.
Collapse
Affiliation(s)
- Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510, Japan.
| | | | | |
Collapse
|
19
|
Yang B, Thorogood D, Armstead IP, Franklin FCH, Barth S. Identification of genes expressed during the self-incompatibility response in perennial ryegrass (Lolium perenne L.). PLANT MOLECULAR BIOLOGY 2009; 70:709-23. [PMID: 19484189 DOI: 10.1007/s11103-009-9501-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 05/16/2009] [Indexed: 05/25/2023]
Abstract
Self-incompatibility (SI) in Lolium perenne is controlled gametophytically by the S-Z two-locus system. S and Z loci mapped to L. perenne linkage groups 1 and 2, respectively, with their corresponding putative-syntenic regions on rice chromosome 5 (R5) and R4. None of the gene products of S and Z have yet been identified. SI cDNA libraries were developed to enrich for SI expressed genes in L. perenne. Transcripts were identified from the SI libraries that were orthologous to sequences on rice R4 and R5. These represent potential SI candidate genes. Altogether ten expressed SI candidate genes were identified. A rapid increase in gene expression within two minutes after pollen-stigma contact was revealed, reaching a maximum between 2 and 10 min. The potential involvement of these genes in the SI reactions is discussed.
Collapse
Affiliation(s)
- Bicheng Yang
- Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
| | | | | | | | | |
Collapse
|
20
|
Vieira J, Fonseca NA, Vieira CP. RNase-based gametophytic self-incompatibility evolution: Questioning the hypothesis of multiple independent recruitments of the S-pollen gene. J Mol Evol 2009; 69:32-41. [PMID: 19495553 DOI: 10.1007/s00239-009-9249-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/15/2009] [Accepted: 05/12/2009] [Indexed: 11/24/2022]
Abstract
Multiple independent recruitments of the S-pollen component (always an F-box gene) during RNase-based gametophytic self-incompatibility evolution have recently been suggested. Therefore, different mechanisms could be used to achieve the rejection of incompatible pollen in different plant families. This hypothesis is, however, mainly based on the interpretation of phylogenetic analyses, using a small number of divergent nucleotide sequences. In this work we show, based on a large collection of F-box S-like sequences, that the inferred relationship of F-box S-pollen and F-box S-like sequences is dependent on the sequence alignment software and phylogenetic method used. Thus, at present, it is not possible to address the phylogenetic relationship of F-box S-pollen and S-like sequences from different plant families. In Petunia and Malus/Pyrus the putative S-pollen gene(s) show(s) variability patterns different than expected for an S-pollen gene, raising the question of false identification. Here we show that in Petunia, the unexpected features of the putative S-pollen gene are not incompatible with this gene's being the S-pollen gene. On the other hand, it is very unlikely that the Pyrus SFBB-gamma gene is involved in specificity determination.
Collapse
Affiliation(s)
- Jorge Vieira
- Instituto de Biologia Molecular e Celular, University of Porto, Portugal
| | | | | |
Collapse
|
21
|
Sanzol J. Pistil-function breakdown in a new S-allele of European pear, S21*, confers self-compatibility. PLANT CELL REPORTS 2009; 28:457-67. [PMID: 19096853 DOI: 10.1007/s00299-008-0645-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/30/2008] [Accepted: 11/16/2008] [Indexed: 05/07/2023]
Abstract
European pear exhibits RNase-based gametophytic self-incompatibility controlled by the polymorphic S-locus. S-allele diversity of cultivars has been extensively investigated; however, no mutant alleles conferring self-compatibility have been reported. In this study, two European pear cultivars, 'Abugo' and 'Ceremeño', were classified as self-compatible after fruit/seed setting and pollen tube growth examination. S-genotyping through S-PCR and sequencing identified a new S-RNase allele in the two cultivars, with identical deduced amino acid sequence as S(21), but differing at the nucleotide level. Test-pollinations and analysis of descendants suggested that the new allele is a self-compatible pistil-mutated variant of S(21), so it was named S(21)*. S-genotypes assigned to 'Abugo' and 'Ceremeño' were S(10)S(21)* and S(21)*S(25) respectively, of which S(25) is a new functional S-allele of European pear. Reciprocal crosses between cultivars bearing S(21) and S(21)* indicated that both alleles exhibit the same pollen function; however, cultivars bearing S(21)* had impaired pistil-S function as they failed to reject either S(21) or S (21)* pollen. RT-PCR analysis showed absence of S(21)* -RNase gene expression in styles of 'Abugo' and 'Ceremeño', suggesting a possible origin for S(21)* pistil dysfunction. Two polymorphisms found within the S-RNase genomic region (a retrotransposon insertion within the intron of S(21)* and indels at the 3'UTR) might explain the different pattern of expression between S(21) and S(21)*. Evaluation of cultivars with unknown S-genotype identified another cultivar 'Azucar Verde' bearing S(21)*, and pollen tube growth examination confirmed self-compatibility for this cultivar as well. This is the first report of a mutated S-allele conferring self-compatibility in European pear.
Collapse
Affiliation(s)
- Javier Sanzol
- Unidad de Fruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain.
| |
Collapse
|
22
|
Yamane H, Tao R. Molecular Basis of Self-(in)compatibility and Current Status of S-genotyping in Rosaceous Fruit Trees. ACTA ACUST UNITED AC 2009. [DOI: 10.2503/jjshs1.78.137] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Huang SX, Wu HQ, Li YR, Wu J, Zhang SJ, Heng W, Zhang SL. Competitive interaction between two functional S-haplotypes confer self-compatibility on tetraploid Chinese cherry (Prunus pseudocerasus Lindl. CV. Nanjing Chuisi). PLANT CELL REPORTS 2008; 27:1075-85. [PMID: 18327590 DOI: 10.1007/s00299-008-0528-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/04/2008] [Accepted: 02/20/2008] [Indexed: 05/13/2023]
Abstract
Self-incompatibility (SI) has been studied extensively at the molecular level in Solanaceae, Rosaceae and Scrophulariaceae, all of which exhibit gametophytic self-incompatibility (GSI). In the present study, four PpsS-haplotypes (Prunus pseudocerasus S-haplotypes) comprising at least two genes, i.e., PpsS-RNase (P. pseudocerasus S-RNase) and PpsSFB (P. pseudocerasus S-haplotype-specific F-box) have been successfully isolated in tetraploid P. pseudocerasus Lindl. CV. Nanjing Chuisi ("NC") which exhibited self-compatibility (SC), and its S-genotype was determined as S-1/S-3'/S-5/S-7. These PpsS-RNases, which were expressed exclusively in style, shared the typical structural features with S-RNases from other Prunus species exhibiting GSI. All PpsSFBs showed similar structure characteristics of SFBs from other Prunus species, and matched with the necessary conditions for pollen S-determinant. No mutations leading to dysfunction of S-haplotype were found in their full-length c-DNA sequences, except for PpsS-3'-haplotype which was not amplified by PCR. These four S-haplotypes complied with tetrasomic inheritance. Diploid pollen grains with S-genotypes S-7/S-1, S-7/S-5 and S-1/S-5 can grow the full length of the style after self-pollination, while pollen grains with S-3'/S-7, S-3'/S-1 and S-3'/S-5 cannot. These results suggest that PpsS-haplotypes-1, -5 and -7 are functional, and that competitive interaction between two of them confer self-compatibility on cultivar "NC". Furthermore, in terms of recognition specificity, diploid pollen grains carrying PpsS-3'-haplotype are equal to monoploid pollen grains carrying the other functional S-haplotype.
Collapse
Affiliation(s)
- S-X Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Okada K, Tonaka N, Moriya Y, Norioka N, Sawamura Y, Matsumoto T, Nakanishi T, Takasaki-Yasuda T. Deletion of a 236 kb region around S 4-RNase in a stylar-part mutant S 4sm-haplotype of Japanese pear. PLANT MOLECULAR BIOLOGY 2008; 66:389-400. [PMID: 18175198 DOI: 10.1007/s11103-007-9277-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/17/2007] [Indexed: 05/07/2023]
Abstract
Japanese pear (Pyrus pyrifolia Nakai) has a gametophytic self-incompatibility (GSI) mechanism controlled by a single S-locus with multiple S-haplotypes, each of which contains separate genes that determine the allelic identity of pistil and pollen. The pistil S gene is the S-ribonuclease (S-RNase) gene, whereas good candidates for the pollen S gene are the F-box protein genes. A self-compatible (SC) cultivar, 'Osa-Nijisseiki', which is a bud mutant of 'Nijisseiki' (S (2) S (4)), has a stylar-part mutant S(4)sm-haplotype, which lacks the S (4)-RNase gene but retains the pollen S gene. To delineate the deletion breakpoint in the S(4)sm-haplotype, we constructed a bacterial artificial chromosome (BAC) library from an S (4)-homozygote, and assembled a BAC contig of 570 kb around the S (4)-RNase. Genomic PCR of DNA from S (4)- and S(4)sm-homozygotes and the DNA sequence of the BAC contig allowed the identification of a deletion of 236 kb spanning from 48 kb upstream to 188 kb downstream of S (4)-RNase. The S(4)sm-haplotype lacks 34 predicted open reading frames (ORFs) including the S (4)-RNase and a pollen-specific F-box protein gene (termed as S (4) F-box0). Genomic PCR with a primer pair designed from the deletion junctions yielded a product specific for the S(4)sm-haplotype. The product could be useful as a maker for early selection of SC cultivars harboring the S(4)sm-haplotype.
Collapse
Affiliation(s)
- Kazuma Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Characterization of SLFL1, a pollen-expressed F-box gene located in the Prunus S locus. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00497-008-0069-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Yang B, Thorogood D, Armstead I, Barth S. How far are we from unravelling self-incompatibility in grasses? THE NEW PHYTOLOGIST 2008; 178:740-753. [PMID: 18373516 DOI: 10.1111/j.1469-8137.2008.02421.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The genetic and physiological mechanisms involved in limiting self-fertilization in angiosperms, referred to as self-incompatibility (SI), have significant effects on population structure and have potential diversification and evolutionary consequences. Up to now, details of the underlying genetic control and physiological basis of SI have been elucidated in two different gametophytic SI (GSI) systems, the S-RNase SI and the Papaver SI systems, and the sporophytic SI (SSI) system (Brassica). In the grass family (Poaceae), which contains all the cereal and major forage crops, SI has been known for half a century to be controlled gametophytically by two multiallelic and independent loci, S and Z. But still none of the gene products for S and Z is known and only limited information on related biochemical responses is available. Here we compare current knowledge of grass SI with that of other well-characterized SI systems and speculate about the relationship between SSI and grass SI. Additionally, we discuss comparative mapping as a tool for the further investigation of grass SI.
Collapse
Affiliation(s)
- Bicheng Yang
- Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- Institute of Grassland and Environmental Research, Aberystwyth, Ceredigion SY23 3EB, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Danny Thorogood
- Institute of Grassland and Environmental Research, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Ian Armstead
- Institute of Grassland and Environmental Research, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Susanne Barth
- Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
| |
Collapse
|
27
|
Kakui H, Tsuzuki T, Koba T, Sassa H. Polymorphism of SFBB-gamma and its use for S genotyping in Japanese pear (Pyrus pyrifolia). PLANT CELL REPORTS 2007; 26:1619-25. [PMID: 17541597 DOI: 10.1007/s00299-007-0386-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 05/12/2007] [Indexed: 05/15/2023]
Abstract
Japanese pear (Pyrus pyrifolia) exhibits the S-RNase-based gametophytic self-incompatibility where the pollen-part determinant, pollen S, had long remained elusive. Recent identification of S locus F-box brothers (SFBB) in Japanese pear and apple suggested that the multiple F-box genes are the pollen S candidates as they exhibited pollen specific expression, S haplotype-specific polymorphisms and linkage to the S locus. In Japanese pear, three SFBBs were identified from a single S haplotype, and they were more homologous to other haplotype genes of the same group (i.e., alpha-, beta- and gamma-groups). In this study, we isolated new seven PpSFBB(-gamma) genes from different S genotypes of Japanese pear. These genes showed S haplotype-specific polymorphisms, however, sequence similarities among them were very high. Based on the sequence polymorphisms of the PpSFBB(-gamma) genes, we developed a CAPS/dCAPS system for S genotyping of the Japanese pear cultivars. This new S genotyping system was found to not only be able to discriminate the S(1)-S(9), but also be suitable for identification of the mutant S(4sm) haplotype for the breeding of self-compatible cultivars, and detection of new S haplotypes such as S(k).
Collapse
Affiliation(s)
- Hiroyuki Kakui
- Graduate School of Science and Technology, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | | | | | | |
Collapse
|
28
|
Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T. S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 2007; 175:1869-81. [PMID: 17237509 PMCID: PMC1855134 DOI: 10.1534/genetics.106.068858] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although recent findings suggest that the F-box genes SFB/SLF control pollen-part S specificity in the S-RNase-based gametophytic self-incompatibility (GSI) system, how these genes operate in the system is unknown, and functional variation of pollen S genes in different species has been reported. Here, we analyzed the S locus of two species of Maloideae: apple (Malus domestica) and Japanese pear (Pyrus pyrifolia). The sequencing of a 317-kb region of the apple S9 haplotype revealed two similar F-box genes. Homologous sequences were isolated from different haplotypes of apple and Japanese pear, and they were found to be polymorphic genes derived from the S locus. Since each S haplotype contains two or three related genes, the genes were named SFBB for S locus F-box brothers. The SFBB genes are specifically expressed in pollen, and variable regions of the SFBB genes are under positive selection. In a style-specific mutant S haplotype of Japanese pear, the SFBB genes are retained. Apart from their multiplicity, SFBB genes meet the expected characteristics of pollen S. The unique multiplicity of SFBB genes as the pollen S candidate is discussed in the context of mechanistic variation in the S-RNase-based GSI system.
Collapse
Affiliation(s)
- Hidenori Sassa
- Faculty of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|