1
|
Stępiński D. Decoding Plant Ribosomal Proteins: Multitasking Players in Cellular Games. Cells 2025; 14:473. [PMID: 40214427 PMCID: PMC11987935 DOI: 10.3390/cells14070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Ribosomal proteins (RPs) were traditionally considered as ribosome building blocks, serving exclusively in ribosome assembly. However, contemporary research highlights their involvement in additional translational roles, as well as diverse non-ribosomal activities. The functional diversity of RPs is further enriched by the presence of 2-7 paralogs per RP family in plants, suggesting that these proteins may perform distinct, specialized functions. The spatiotemporal expression of RP paralogs allows for the assembly of unique ribosomes (ribosome heterogeneity), enabling the selective translation of specific mRNAs, and producing specialized proteins essential for plant functioning. Additionally, RPs that operate independently of ribosomes as free molecules may regulate a wide range of physiological processes. RPs involved in protein biosynthesis within the cytosol, mitochondria, or plastids are encoded by distinct genes, which account for their functional specialization. Notably, RPs associated with plastid or mitochondrial ribosomes, beyond their canonical roles in these organelles, also contribute to overall plant development and functionality, akin to their cytosolic counterparts. This review explores the roles of RPs in different cellular compartments, the presumed molecular mechanisms underlying their functions, and the involvement of other molecular factors that cooperate with RPs in these processes. In addition to the new RP nomenclature introduced in 2022/2023, the old names are also applied.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Wang X, Ji D, Ma J, Chi W. Function of plastid translation in plant temperature acclimation: Retrograde signalling or extraribosomal 'moonlighting' functions? PLANT, CELL & ENVIRONMENT 2024; 47:4908-4916. [PMID: 39101459 DOI: 10.1111/pce.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Summary StatementSpecific components of the plastid ribosome could act as pivotal limiting factors in plant temperature acclimation. We endeavour to elucidate the molecular nexus between plastid translation and temperature acclimation by incorporating the concept of extraribosomal ‘moonlighting’ functions of plastid ribosome proteins.
Collapse
Affiliation(s)
- Xiushun Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daili Ji
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Ma
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Chi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Legen J, Lenzen B, Kachariya N, Feltgen S, Gao Y, Mergenthal S, Weber W, Klotzsch E, Zoschke R, Sattler M, Schmitz-Linneweber C. A prion-like domain is required for phase separation and chloroplast RNA processing during cold acclimation in Arabidopsis. THE PLANT CELL 2024; 36:2851-2872. [PMID: 38723165 PMCID: PMC11289645 DOI: 10.1093/plcell/koae145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/06/2024] [Indexed: 08/02/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) plants can produce photosynthetic tissue with active chloroplasts at temperatures as low as 4°C, and this process depends on the presence of the nuclear-encoded, chloroplast-localized RNA-binding protein CP29A. In this study, we demonstrate that CP29A undergoes phase separation in vitro and in vivo in a temperature-dependent manner, which is mediated by a prion-like domain (PLD) located between the two RNA recognition motif domains of CP29A. The resulting droplets display liquid-like properties and are found near chloroplast nucleoids. The PLD is required to support chloroplast RNA splicing and translation in cold-treated tissue. Together, our findings suggest that plant chloroplast gene expression is compartmentalized by inducible condensation of CP29A at low temperatures, a mechanism that could play a crucial role in plant cold resistance.
Collapse
Affiliation(s)
- Julia Legen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Benjamin Lenzen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Nitin Kachariya
- Helmholtz Munich, Institute of Structural Biology, Ingolstädter Landstrasse 1, Munich 85764, Germany
- Department of Bioscience, Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Stephanie Feltgen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Simon Mergenthal
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Willi Weber
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Michael Sattler
- Helmholtz Munich, Institute of Structural Biology, Ingolstädter Landstrasse 1, Munich 85764, Germany
- Department of Bioscience, Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | | |
Collapse
|
4
|
Godwin J, Govindasamy M, Nedounsejian K, March E, Halton R, Bourbousse C, Wolff L, Fort A, Krzyszton M, López Corrales J, Swiezewski S, Barneche F, Schubert D, Farrona S. The UBP5 histone H2A deubiquitinase counteracts PRCs-mediated repression to regulate Arabidopsis development. Nat Commun 2024; 15:667. [PMID: 38253560 PMCID: PMC10803359 DOI: 10.1038/s41467-023-44546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Polycomb Repressive Complexes (PRCs) control gene expression through the incorporation of H2Aub and H3K27me3. In recent years, there is increasing evidence of the complexity of PRCs' interaction networks and the interplay of these interactors with PRCs in epigenome reshaping, which is fundamental to understand gene regulatory mechanisms. Here, we identified UBIQUITIN SPECIFIC PROTEASE 5 (UBP5) as a chromatin player able to counteract the deposition of the two PRCs' epigenetic hallmarks in Arabidopsis thaliana. We demonstrated that UBP5 is a plant developmental regulator based on functional analyses of ubp5-CRISPR Cas9 mutant plants. UBP5 promotes H2A monoubiquitination erasure, leading to transcriptional de-repression. Furthermore, preferential association of UBP5 at PRC2 recruiting motifs and local H3K27me3 gaining in ubp5 mutant plants suggest the existence of functional interplays between UBP5 and PRC2 in regulating epigenome dynamics. In summary, acting as an antagonist of the pivotal epigenetic repressive marks H2Aub and H3K27me3, UBP5 provides novel insights to disentangle the complex regulation of PRCs' activities.
Collapse
Affiliation(s)
- James Godwin
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Mohan Govindasamy
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
| | - Kiruba Nedounsejian
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
| | - Eduardo March
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
| | - Ronan Halton
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
| | - Clara Bourbousse
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léa Wolff
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Antoine Fort
- Dept. of Veterinary and Microbial Sciences, Technological University of The Shannon: Midlands, Athlone, Co., Roscommon, Ireland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, Warsaw, 02-106, Poland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory (MPL), Centre for One Health and Ryan Institute, School of Natural Sciences, University of Galway, Galway, H91 DK59, Ireland
| | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, Warsaw, 02-106, Poland
| | - Fredy Barneche
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Daniel Schubert
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Sara Farrona
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland.
| |
Collapse
|
5
|
Valencia-Lozano E, Herrera-Isidrón L, Flores-López JA, Recoder-Meléndez OS, Uribe-López B, Barraza A, Cabrera-Ponce JL. Exploring the Potential Role of Ribosomal Proteins to Enhance Potato Resilience in the Face of Changing Climatic Conditions. Genes (Basel) 2023; 14:1463. [PMID: 37510367 PMCID: PMC10379993 DOI: 10.3390/genes14071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Potatoes have emerged as a key non-grain crop for food security worldwide. However, the looming threat of climate change poses significant risks to this vital food source, particularly through the projected reduction in crop yields under warmer temperatures. To mitigate potential crises, the development of potato varieties through genome editing holds great promise. In this study, we performed a comprehensive transcriptomic analysis to investigate microtuber development and identified several differentially expressed genes, with a particular focus on ribosomal proteins-RPL11, RPL29, RPL40 and RPL17. Our results reveal, by protein-protein interaction (PPI) network analyses, performed with the highest confidence in the STRING database platform (v11.5), the critical involvement of these ribosomal proteins in microtuber development, and highlighted their interaction with PEBP family members as potential microtuber activators. The elucidation of the molecular biological mechanisms governing ribosomal proteins will help improve the resilience of potato crops in the face of today's changing climatic conditions.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Lisset Herrera-Isidrón
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Jorge Abraham Flores-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Osiel Salvador Recoder-Meléndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Braulio Uribe-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noreste, SC., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz CP 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
6
|
Robles P, Quesada V. Unveiling the functions of plastid ribosomal proteins in plant development and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:35-45. [PMID: 36041366 DOI: 10.1016/j.plaphy.2022.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Translation of mRNAs into proteins is a universal process and ribosomes are the molecular machinery that carries it out. In eukaryotic cells, ribosomes can be found in the cytoplasm, mitochondria, and also in the chloroplasts of photosynthetic organisms. A number of genetic studies have been performed to determine the function of plastid ribosomal proteins (PRPs). Tobacco has been frequently used as a system to study the ribosomal proteins encoded by the chloroplast genome. In contrast, Arabidopsis thaliana and rice are preferentially used models to study the function of nuclear-encoded PRPs by using direct or reverse genetics approaches. The results of these works have provided a relatively comprehensive catalogue of the roles of PRPs in different plant biology aspects, which highlight that some PRPs are essential, while others are not. The latter ones are involved in chloroplast biogenesis, lateral root formation, leaf morphogenesis, plant growth, photosynthesis or chlorophyll synthesis. Furthermore, small gene families encode some PRPs. In the last few years, an increasing number of findings have revealed a close association between PRPs and tolerance to adverse environmental conditions. Sometimes, the same PRP can be involved in both developmental processes and the response to abiotic stress. The aim of this review is to compile and update the findings hitherto published on the functional analysis of PRPs. The study of the phenotypic effects caused by the disruption of PRPs from different species reveals the involvement of PRPs in different biological processes and highlights the significant impact of plastid translation on plant biology.
Collapse
Affiliation(s)
- Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|