1
|
Asim MN, Asif T, Mehmood F, Dengel A. Peptide classification landscape: An in-depth systematic literature review on peptide types, databases, datasets, predictors architectures and performance. Comput Biol Med 2025; 188:109821. [PMID: 39987697 DOI: 10.1016/j.compbiomed.2025.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Peptides are gaining significant attention in diverse fields such as the pharmaceutical market has seen a steady rise in peptide-based therapeutics over the past six decades. Peptides have been utilized in the development of distinct applications including inhibitors of SARS-COV-2 and treatments for conditions like cancer and diabetes. Distinct types of peptides possess unique characteristics, and development of peptide-specific applications require the discrimination of one peptide type from others. To the best of our knowledge, approximately 230 Artificial Intelligence (AI) driven applications have been developed for 22 distinct types of peptides, yet there remains significant room for development of new predictors. A Comprehensive review addresses the critical gap by providing a consolidated platform for the development of AI-driven peptide classification applications. This paper offers several key contributions, including presenting the biological foundations of 22 unique peptide types and categorizes them into four main classes: Regulatory, Therapeutic, Nutritional, and Delivery Peptides. It offers an in-depth overview of 47 databases that have been used to develop peptide classification benchmark datasets. It summarizes details of 288 benchmark datasets that are used in development of diverse types AI-driven peptide classification applications. It provides a detailed summary of 197 sequence representation learning methods and 94 classifiers that have been used to develop 230 distinct AI-driven peptide classification applications. Across 22 distinct types peptide classification tasks related to 288 benchmark datasets, it demonstrates performance values of 230 AI-driven peptide classification applications. It summarizes experimental settings and various evaluation measures that have been employed to assess the performance of AI-driven peptide classification applications. The primary focus of this manuscript is to consolidate scattered information into a single comprehensive platform. This resource will greatly assist researchers who are interested in developing new AI-driven peptide classification applications.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany.
| | - Tayyaba Asif
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Faiza Mehmood
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Institute of Data Sciences, University of Engineering and Technology, Lahore, Pakistan
| | - Andreas Dengel
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| |
Collapse
|
2
|
Fu X, Duan H, Zang X, Liu C, Li X, Zhang Q, Zhang Z, Zou Q, Cui F. Hyb_SEnc: An Antituberculosis Peptide Predictor Based on a Hybrid Feature Vector and Stacked Ensemble Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1897-1910. [PMID: 39083393 DOI: 10.1109/tcbb.2024.3425644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Tuberculosis has plagued mankind since ancient times, and the struggle between humans and tuberculosis continues. Mycobacterium tuberculosis is the leading cause of tuberculosis, infecting nearly one-third of the world's population. The rise of peptide drugs has created a new direction in the treatment of tuberculosis. Therefore, for the treatment of tuberculosis, the prediction of anti-tuberculosis peptides is crucial. This paper proposes an anti-tuberculosis peptide prediction method based on hybrid features and stacked ensemble learning. First, a random forest (RF) and extremely randomized tree (ERT) are selected as first-level learning of stacked ensembles. Then, the five best-performing feature encoding methods are selected to obtain the hybrid feature vector, and then the decision tree and recursive feature elimination (DT-RFE) are used to refine the hybrid feature vector. After selection, the optimal feature subset is used as the input of the stacked ensemble model. At the same time, logistic regression (LR) is used as a stacked ensemble secondary learner to build the final stacked ensemble model Hyb_SEnc. The prediction accuracy of Hyb_SEnc achieved 94.68% and 95.74% on the independent test sets of AntiTb_MD and AntiTb_RD, respectively.
Collapse
|
3
|
Yang Y, Wu H, Gao Y, Tong W, Li K. MFPPDB: a comprehensive multi-functional plant peptide database. FRONTIERS IN PLANT SCIENCE 2023; 14:1224394. [PMID: 37908832 PMCID: PMC10613858 DOI: 10.3389/fpls.2023.1224394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
Plants produce a wide range of bioactive peptides as part of their innate defense mechanisms. With the explosive growth of plant-derived peptides, verifying the therapeutic function using traditional experimental methods are resources and time consuming. Therefore, it is necessary to predict the therapeutic function of plant-derived peptides more effectively and accurately with reduced waste of resources and thus expedite the development of plant peptides. We herein developed a repository of plant peptides predicted to have multiple therapeutic functions, named as MFPPDB (multi-functional plant peptide database). MFPPDB including 1,482,409 single or multiple functional plant origin therapeutic peptides derived from 121 fundamental plant species. The functional categories of these therapeutic peptides include 41 different features such as anti-bacterial, anti-fungal, anti-HIV, anti-viral, and anti-cancer. The detailed physicochemical information of these peptides was presented in functional search and physicochemical property search module, which can help users easily access the peptide information by the plant peptide species, ID, and functions, or by their peptide ID, isoelectric point, peptide sequence, and molecular weight through web-friendly interface. We further matched the predicted peptides to nine state-of-the-art curated functional peptide databases and found that at least 293,408 of the peptides possess functional potentials. Overall, MFPPDB integrated a massive number of plant peptides have single or multiple therapeutic functions, which will facilitate the comprehensive research in plant peptidomics. MFPPDB can be freely accessed through http://124.223.195.214:9188/mfppdb/index.
Collapse
Affiliation(s)
- Yaozu Yang
- School of Information and Computer, Anhui Agricultural University, Hefei, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Hongwei Wu
- School of Information and Computer, Anhui Agricultural University, Hefei, China
| | - Yu Gao
- School of Information and Computer, Anhui Agricultural University, Hefei, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Ke Li
- School of Information and Computer, Anhui Agricultural University, Hefei, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, Anhui, China
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
4
|
Jain P, Som T. Multigranular rough set model based on robust intuitionistic fuzzy covering with application to feature selection. Int J Approx Reason 2023. [DOI: 10.1016/j.ijar.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Dong B, Li M, Jiang B, Gao B, Li D, Zhang T. Antimicrobial Peptides Prediction method based on sequence multidimensional feature embedding. Front Genet 2022; 13:1069558. [PMID: 36468005 PMCID: PMC9714691 DOI: 10.3389/fgene.2022.1069558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
Antimicrobial peptides (AMPs) are alkaline substances with efficient bactericidal activity produced in living organisms. As the best substitute for antibiotics, they have been paid more and more attention in scientific research and clinical application. AMPs can be produced from almost all organisms and are capable of killing a wide variety of pathogenic microorganisms. In addition to being antibacterial, natural AMPs have many other therapeutically important activities, such as wound healing, antioxidant and immunomodulatory effects. To discover new AMPs, the use of wet experimental methods is expensive and difficult, and bioinformatics technology can effectively solve this problem. Recently, some deep learning methods have been applied to the prediction of AMPs and achieved good results. To further improve the prediction accuracy of AMPs, this paper designs a new deep learning method based on sequence multidimensional representation. By encoding and embedding sequence features, and then inputting the model to identify AMPs, high-precision classification of AMPs and Non-AMPs with lengths of 10-200 is achieved. The results show that our method improved accuracy by 1.05% compared to the most advanced model in independent data validation without decreasing other indicators.
Collapse
Affiliation(s)
- Benzhi Dong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Mengna Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bei Jiang
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Yan W, Tang W, Wang L, Bin Y, Xia J. PrMFTP: Multi-functional therapeutic peptides prediction based on multi-head self-attention mechanism and class weight optimization. PLoS Comput Biol 2022; 18:e1010511. [PMID: 36094961 PMCID: PMC9499272 DOI: 10.1371/journal.pcbi.1010511] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Prediction of therapeutic peptide is a significant step for the discovery of promising therapeutic drugs. Most of the existing studies have focused on the mono-functional therapeutic peptide prediction. However, the number of multi-functional therapeutic peptides (MFTP) is growing rapidly, which requires new computational schemes to be proposed to facilitate MFTP discovery. In this study, based on multi-head self-attention mechanism and class weight optimization algorithm, we propose a novel model called PrMFTP for MFTP prediction. PrMFTP exploits multi-scale convolutional neural network, bi-directional long short-term memory, and multi-head self-attention mechanisms to fully extract and learn informative features of peptide sequence to predict MFTP. In addition, we design a class weight optimization scheme to address the problem of label imbalanced data. Comprehensive evaluation demonstrate that PrMFTP is superior to other state-of-the-art computational methods for predicting MFTP. We provide a user-friendly web server of PrMFTP, which is available at http://bioinfo.ahu.edu.cn/PrMFTP.
Collapse
Affiliation(s)
- Wenhui Yan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Wending Tang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Lihua Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Yannan Bin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- * E-mail: (YB); (JX)
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- * E-mail: (YB); (JX)
| |
Collapse
|
7
|
Jain P, Tiwari A, Som T. Fuzzy rough assisted missing value imputation and feature selection. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Mishra AK, Singh RK, Jain NK. A novel intuitionistic fuzzy rough set model and its application to enhance umami peptide prediction. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Datasets mainly consist of ambiguous objects, redundant and uncertain attribute values which increase complexity, time and cost in Knowledge Discovery in Databases (KDD) process. Rough set-based attribute reduction techniques deals with ambiguity but fails to handle uncertainty available in a real-valued dataset. Combining rough set with intuitionistic fuzzy set provides a great opportunity to the researchers working on attribute reduction of real-valued datasets as it provides better results when compared to the traditional fuzzy rough set theory. In this paper, we present a new intuitionistic fuzzy rough set model for attribute reduction to avoid misclassification and perturbation by handling hesitancy, ambiguity and uncertainty present in a dataset. We define an intuitionistic fuzzy tolerance relation between two objects along with lower and upper approximations based on that relation. Next, the concept of Degree of dependency is utilized to present attribute reduction by using model due to its better performing nature over other methods. The algorithm of the proposed technique is applied on benchmark datasets to perform a comparative study with recent approaches. We obtain the best result for the reduced Breast Cancer dataset by our proposed approach, with an accuracy of 98.96% along with 0.90 standard deviation by using SMO classifier. Finally, our proposed method is used to present a methodology to improve the prediction of umami peptides. Here, we record the best results with sensitivity, specificity, accuracy, AUC, and MCC of 96.8%, 93.6%, 97.7%, 0.988, and 0.899, respectively. From the experiments, it can be concluded that our method outperforms the existing methods.
Collapse
Affiliation(s)
- Aneesh Kumar Mishra
- Department of Computer Science and Engineering, Jaypee University of Engineering & Technology Guna (M.P.), India
| | - Ravindra Kumar Singh
- Department of Computer Science and Engineering, Jaypee University of Engineering & Technology Guna (M.P.), India
| | - Neelesh Kumar Jain
- Department of Computer Science and Engineering, Jaypee University of Engineering & Technology Guna (M.P.), India
| |
Collapse
|
9
|
Bhosale H, Ramakrishnan V, Jayaraman VK. Support vector machine-based prediction of pore-forming toxins (PFT) using distributed representation of reduced alphabets. J Bioinform Comput Biol 2021; 19:2150028. [PMID: 34693886 DOI: 10.1142/s0219720021500281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacterial virulence can be attributed to a wide variety of factors including toxins that harm the host. Pore-forming toxins are one class of toxins that confer virulence to the bacteria and are one of the promising targets for therapeutic intervention. In this work, we develop a sequence-based machine learning framework for the prediction of pore-forming toxins. For this, we have used distributed representation of the protein sequence encoded by reduced alphabet schemes based on conformational similarity and hydropathy index as input features to Support Vector Machines (SVMs). The choice of conformational similarity and hydropathy indices is based on the functional mechanism of pore-forming toxins. Our methodology achieves about 81% accuracy indicating that conformational similarity, an indicator of the flexibility of amino acids, along with hydrophobic index can capture the intrinsic features of pore-forming toxins that distinguish it from other types of transporter proteins. Increased understanding of the mechanisms of pore-forming toxins can further contribute to the use of such "mechanism-informed" features that may increase the prediction accuracy further.
Collapse
Affiliation(s)
- Hrushikesh Bhosale
- Department of Computer Science, FLAME University, Pune, Maharashtra, India
| | - Vigneshwar Ramakrishnan
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, Tamilnadu, India
| | - Valadi K Jayaraman
- Department of Computer Science, FLAME University, Pune, Maharashtra, India
| |
Collapse
|
10
|
Akbar S, Ahmad A, Hayat M, Rehman AU, Khan S, Ali F. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model. Comput Biol Med 2021; 137:104778. [PMID: 34481183 DOI: 10.1016/j.compbiomed.2021.104778] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is a worldwide illness caused by the bacteria Mycobacterium tuberculosis. Owing to the high prevalence of multidrug-resistant tuberculosis, numerous traditional strategies for developing novel alternative therapies have been presented. The effectiveness and dependability of these procedures are not always consistent. Peptide-based therapy has recently been regarded as a preferable alternative due to its excellent selectivity in targeting specific cells without affecting the normal cells. However, due to the rapid growth of the peptide samples, predicting TB accurately has become a challenging task. To effectively identify antitubercular peptides, an intelligent and reliable prediction model is indispensable. An ensemble learning approach was used in this study to improve expected results by compensating for the shortcomings of individual classification algorithms. Initially, three distinct representation approaches were used to formulate the training samples: k-space amino acid composition, composite physiochemical properties, and one-hot encoding. The feature vectors of the applied feature extraction methods are then combined to generate a heterogeneous vector. Finally, utilizing individual and heterogeneous vectors, five distinct nature classification models were used to evaluate prediction rates. In addition, a genetic algorithm-based ensemble model was used to improve the suggested model's prediction and training capabilities. Using Training and independent datasets, the proposed ensemble model achieved an accuracy of 94.47% and 92.68%, respectively. It was observed that our proposed "iAtbP-Hyb-EnC" model outperformed and reported ~10% highest training accuracy than existing predictors. The "iAtbP-Hyb-EnC" model is suggested to be a reliable tool for scientists and might play a valuable role in academic research and drug discovery. The source code and all datasets are publicly available at https://github.com/Farman335/iAtbP-Hyb-EnC.
Collapse
Affiliation(s)
- Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Ashfaq Ahmad
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Ateeq Ur Rehman
- Department of Information Technology, The University of Haripur, KP, Pakistan.
| | - Salman Khan
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Farman Ali
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|