1
|
Singh Parmar UP, Surico PL, Singh RB, Romano F, Salati C, Spadea L, Musa M, Gagliano C, Mori T, Zeppieri M. Künstliche Intelligenz (KI) zur Früherkennung von Netzhauterkrankungen. KOMPASS OPHTHALMOLOGIE 2025:1-8. [DOI: 10.1159/000546000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Künstliche Intelligenz (KI) hat sich zu einem transformativen Werkzeug auf dem Gebiet der Augenheilkunde entwickelt und revolutioniert die Diagnose und Behandlung von Krankheiten. Diese Arbeit gibt einen umfassenden Überblick über KI-Anwendungen bei verschiedenen Netzhauterkrankungen und zeigt ihr Potenzial, die Effizienz von Vorsorgeuntersuchungen zu erhöhen, Frühdiagnosen zu erleichtern und die Patientenergebnisse zu verbessern. Wir erklären die grundlegenden Konzepte der KI, einschließlich des maschinellen Lernens (ML) und des Deep Learning (DL), und deren Anwendung in der Augenheilkunde und heben die Bedeutung von KI-basierten Lösungen bei der Bewältigung der Komplexität und Variabilität von Netzhauterkrankungen hervor. Wir gehen auch auf spezifische Anwendungen der KI im Zusammenhang mit Netzhauterkrankungen wie diabetischer Retinopathie (DR), altersbedingter Makuladegeneration (AMD), makulärer Neovaskularisation, Frühgeborenen-Retinopathie (ROP), retinalem Venenverschluss (RVO), hypertensiver Retinopathie (HR), Retinopathia pigmentosa, Morbus Stargardt, Morbus Best (Best’sche vitelliforme Makuladystrophie) und Sichelzellenretinopathie ein. Wir konzentrieren uns auf die aktuelle Landschaft der KI-Technologien, einschließlich verschiedener KI-Modelle, ihrer Leistungsmetriken und klinischen Implikationen. Darüber hinaus befassen wir uns mit den Herausforderungen und Schwierigkeiten bei der Integration von KI in die klinische Praxis, einschließlich des «Black-Box-Phänomens», der Verzerrungen bei der Darstellung von Daten und der Einschränkungen im Zusammenhang mit der ganzheitlichen Bewertung von Patienten. Abschließend wird die kollaborative Rolle der KI an der Seite des medizinischen Fachpersonals hervorgehoben, wobei ein synergetischer Ansatz für die Erbringung von Gesundheitsdienstleistungen befürwortet wird. Es wird betont, wie wichtig es ist, KI als Ergänzung und nicht als Ersatz für menschliche Expertise einzusetzen, um ihr Potenzial zu maximieren, die Gesundheitsversorgung zu revolutionieren, Ungleichheiten in der Gesundheitsversorgung zu verringern und die Patientenergebnisse in der sich entwickelnden medizinischen Landschaft zu verbessern.
Collapse
|
2
|
Fan J, Yang T, Wang H, Zhang H, Zhang W, Ji M, Miao J. A Self-Supervised Equivariant Refinement Classification Network for Diabetic Retinopathy Classification. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01270-z. [PMID: 39299958 DOI: 10.1007/s10278-024-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Diabetic retinopathy (DR) is a retinal disease caused by diabetes. If there is no intervention, it may even lead to blindness. Therefore, the detection of diabetic retinopathy is of great significance for preventing blindness in patients. Most of the existing DR detection methods use supervised methods, which usually require a large number of accurate pixel-level annotations. To solve this problem, we propose a self-supervised Equivariant Refinement Classification Network (ERCN) for DR classification. First, we use an unsupervised contrast pre-training network to learn a more generalized representation. Secondly, the class activation map (CAM) is refined by self-supervision learning. It first uses a spatial masking method to suppress low-confidence predictions, and then uses the feature similarity between pixels to encourage fine-grained activation to achieve more accurate positioning of the lesion. We propose a hybrid equivariant regularization loss to alleviate the degradation caused by the local minimum in the CAM refinement process. To further improve the classification accuracy, we propose an attention-based multi-instance learning (MIL), which weights each element of the feature map as an instance, which is more effective than the traditional patch-based instance extraction method. We evaluate our method on the EyePACS and DAVIS datasets and achieved 87.4% test accuracy in the EyePACS dataset and 88.7% test accuracy in the DAVIS dataset. It shows that the proposed method achieves better performance in DR detection compared with other state-of-the-art methods in self-supervised DR detection.
Collapse
Affiliation(s)
- Jiacheng Fan
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Tiejun Yang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China.
- Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, China.
- Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), 100 Lianhua Street, High-Tech Zone, Zhengzhou, 450001, Henan, China.
| | - Heng Wang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Huiyao Zhang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenjie Zhang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mingzhu Ji
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianyu Miao
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Parmar UPS, Surico PL, Singh RB, Romano F, Salati C, Spadea L, Musa M, Gagliano C, Mori T, Zeppieri M. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:527. [PMID: 38674173 PMCID: PMC11052176 DOI: 10.3390/medicina60040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Artificial intelligence (AI) has emerged as a transformative tool in the field of ophthalmology, revolutionizing disease diagnosis and management. This paper provides a comprehensive overview of AI applications in various retinal diseases, highlighting its potential to enhance screening efficiency, facilitate early diagnosis, and improve patient outcomes. Herein, we elucidate the fundamental concepts of AI, including machine learning (ML) and deep learning (DL), and their application in ophthalmology, underscoring the significance of AI-driven solutions in addressing the complexity and variability of retinal diseases. Furthermore, we delve into the specific applications of AI in retinal diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), Macular Neovascularization, retinopathy of prematurity (ROP), retinal vein occlusion (RVO), hypertensive retinopathy (HR), Retinitis Pigmentosa, Stargardt disease, best vitelliform macular dystrophy, and sickle cell retinopathy. We focus on the current landscape of AI technologies, including various AI models, their performance metrics, and clinical implications. Furthermore, we aim to address challenges and pitfalls associated with the integration of AI in clinical practice, including the "black box phenomenon", biases in data representation, and limitations in comprehensive patient assessment. In conclusion, this review emphasizes the collaborative role of AI alongside healthcare professionals, advocating for a synergistic approach to healthcare delivery. It highlights the importance of leveraging AI to augment, rather than replace, human expertise, thereby maximizing its potential to revolutionize healthcare delivery, mitigate healthcare disparities, and improve patient outcomes in the evolving landscape of medicine.
Collapse
Affiliation(s)
| | - Pier Luigi Surico
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Romano
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
4
|
Zhang G, Sun B, Zhang Z, Wu S, Zhuo G, Rong H, Liu Y, Yang W. Hypermixed Convolutional Neural Network for Retinal Vein Occlusion Classification. DISEASE MARKERS 2022; 2022:1730501. [PMID: 36408465 PMCID: PMC9674409 DOI: 10.1155/2022/1730501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 01/22/2024]
Abstract
Retinal vein occlusion (RVO) is one of the most common retinal vascular diseases leading to vision loss if not diagnosed and treated in time. RVO can be classified into two types: CRVO (blockage of the main retinal veins) and BRVO (blockage of one of the smaller branch veins). Automated diagnosis of RVO can improve clinical workflow and optimize treatment strategies. However, to the best of our knowledge, there are few reported methods for automated identification of different RVO types. In this study, we propose a new hypermixed convolutional neural network (CNN) model, namely, the VGG-CAM network, that can classify the two types of RVOs based on retinal fundus images and detect lesion areas using an unsupervised learning method. The image data used in this study is collected and labeled by three senior ophthalmologists in Shanxi Eye Hospital, China. The proposed network is validated to accurately classify RVO diseases and detect lesions. It can potentially assist in further investigating the association between RVO and brain vascular diseases and evaluating the optimal treatments for RVO.
Collapse
Affiliation(s)
- Guanghua Zhang
- Department of Intelligence and Automation, Taiyuan University, Taiyuan 030000, China
- Graphics and Imaging Laboratory, University of Girona, Spain
| | - Bin Sun
- Shanxi Eye Hospital, Taiyuan 030002, China
| | | | - Shiyu Wu
- Department of Computer, Taiyuan Normal University, Jinzhong 030619, China
| | - Guangping Zhuo
- Department of Computer, Taiyuan Normal University, Jinzhong 030619, China
| | - Huifang Rong
- Department of Intelligence and Automation, Taiyuan University, Taiyuan 030000, China
| | - Yunfang Liu
- The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Weihua Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| |
Collapse
|
5
|
Kazeminasab ES, Almasi R, Shoushtarian B, Golkar E, Rabbani H. Automatic Detection of Microaneurysms in OCT Images Using Bag of Features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1233068. [PMID: 39279986 PMCID: PMC11401702 DOI: 10.1155/2022/1233068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 09/18/2024]
Abstract
Diabetic retinopathy (DR) caused by diabetes occurs as a result of changes in the retinal vessels and causes visual impairment. Microaneurysms (MAs) are the early clinical signs of DR, whose timely diagnosis can help detecting DR in the early stages of its development. It has been observed that MAs are more common in the inner retinal layers compared to the outer retinal layers in eyes suffering from DR. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides a cross-sectional view of the retina, and it has been used in recent years to diagnose many eye diseases. As a result, this paper attempts to identify areas with MA from normal areas of the retina using OCT images. This work is done using the dataset collected from FA and OCT images of 20 patients with DR. In this regard, firstly fluorescein angiography (FA) and OCT images were registered. Then, the MA and normal areas were separated, and the features of each of these areas were extracted using the Bag of Features (BOF) approach with the Speeded-Up Robust Feature (SURF) descriptor. Finally, the classification process was performed using a multilayer perceptron network. For each of the criteria of accuracy, sensitivity, specificity, and precision, the obtained results were 96.33%, 97.33%, 95.4%, and 95.28%, respectively. Utilizing OCT images to detect MAs automatically is a new idea, and the results obtained as preliminary research in this field are promising.
Collapse
Affiliation(s)
- Elahe Sadat Kazeminasab
- Department of Artificial Intelligence, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
- Medical Image & Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ramin Almasi
- Department of Computer Architecture, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
| | - Bijan Shoushtarian
- Department of Artificial Intelligence, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
| | - Ehsan Golkar
- Medical Image & Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Rabbani
- Medical Image & Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
A dark and bright channel prior guided deep network for retinal image quality assessment. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|