1
|
Shinu P, Gupta GL, Sharma M, Khan S, Goyal M, Nair AB, Kumar M, Soliman WE, Rahman A, Attimarad M, Venugopala KN, Altaweel AAA. Pharmacological Features of 18β-Glycyrrhetinic Acid: A Pentacyclic Triterpenoid of Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1086. [PMID: 36903944 PMCID: PMC10005454 DOI: 10.3390/plants12051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18β-glycyrrhetinic acid (18βGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18βGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18βGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18βGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18βGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18βGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133201, India
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
2
|
Li T, Wu F, Zhang A, Dong H, Ullah I, Lin H, Miao J, Sun H, Han Y, He Y, Wang X. High-Throughput Chinmedomics Strategy Discovers the Quality Markers and Mechanisms of Wutou Decoction Therapeutic for Rheumatoid Arthritis. Front Pharmacol 2022; 13:854087. [PMID: 35496313 PMCID: PMC9039025 DOI: 10.3389/fphar.2022.854087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Wutou decoction (WTD) is a traditional Chinese medicine prescription for the treatment of rheumatoid arthritis (RA), and this study systematically analyzed the metabolic mechanism and key pharmacodynamic components of WTD in RA rats by combining untargeted metabolomics and serum pharmacochemistry of traditional Chinese medicine to enrich the evidence of WTD quality markers (Q-markers) studies. WTD prevented synovial edema in RA rats and reduced tumor necrosis factor-alpha and interleukin 6 levels in rat serum, according to the results of an enzyme-linked immunosorbent examination and histopathological inspection. In model rats, pattern recognition and multivariate statistical analysis revealed 24 aberrant metabolites that disrupted linoleic acid metabolism, arachidonic acid metabolism, arginine and proline metabolism, etc. However, continued dosing of WTD for 28 days reversed 13 abnormal metabolites, which may be an important therapeutic mechanism from a metabolomic perspective. Importantly, 12 prototypical components and 16 metabolites from WTD were characterized in RA rat serum. The results of Pearson correlation analysis showed that aconitine, L-ephedrine, L-methylephedrine, quercetin, albiflorin, paeoniflorigenone, astragaline A, astragaloside II, glycyrrhetic acid, glycyrrhizic acid, licurazide, and isoliquiritigenin are the key pharmacological components that regulate the metabolism of RA rats, and they are identified as Q-markers. In sum, utilizing metabolomics and serum pharmacochemistry of traditional Chinese medicine, the metabolic mechanisms and Q-markers of WTD therapy in RA rats were revealed, providing a theoretical basis for the quality control investigation of WTD.
Collapse
Affiliation(s)
- Taiping Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China.,National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Dong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ihsan Ullah
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hao Lin
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianhua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China.,National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Kim SH, Hong JH, Lee JE, Lee YC. 18β-Glycyrrhetinic acid, the major bioactive component of Glycyrrhizae Radix, attenuates airway inflammation by modulating Th2 cytokines, GATA-3, STAT6, and Foxp3 transcription factors in an asthmatic mouse model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:99-113. [PMID: 28410469 DOI: 10.1016/j.etap.2017.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/03/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
18β-Glycyrrhetinic acid (18Gly), the major bioactive component of Glycyrrhizae Radix, possesses anti-ulcerative, anti-inflammatory, and other pharmacological properties. Although 18Gly is associated with immunoregulatory functions of allergic diseases, the pathophysiological mechanisms of 18Gly action in allergic inflammatory lung disease have not been examined. Moreover, there are no in vivo studies on the anti-asthmatic effects of 18Gly in allergic asthma. We investigated its effect and mechanism of action in airway inflammation in a BALB/c mouse model of allergic asthma. Interestingly, 18Gly strongly suppressed airway hyperresponsiveness, accumulation of inflammatory cells, and levels of T helper type 2 (Th2) cytokines (interleukin (IL)-5 and IL-13) in bronchoalveolar lavage fluid (BALF). It also attenuated lung IL-5, IL-13, and IL-4 expression, but it upregulated peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression in lungs. Moreover, it exerted immunomodulatory effects by suppressing Th2 cytokines (IL-5, IL-13) production through upregulation of forkhead box p3 (Foxp3), and downregulation of signal transducer and activator of transcription (STAT6), GATA-binding protein 3 (GATA-3), and retinoic acid-related orphan receptor γ t (RORγt) expression. These results suggest that the anti-asthmatic activity of 18Gly may occur by the suppression of IL-5, IL-13, and OVA-specific Immunoglobulin E (IgE) production through inhibition of the RORγt, STAT6, GATA-3 pathways and upregulation of the Foxp3 transcription pathway. Also, 18Gly treatment was protective against the oxidative stress by inducing significant decrease of reactive oxygen species (ROS) generation in MH-S alveolar macrophage cells. Our results suggest that 18Gly can improve allergic asthma and can be a novel therapeutic component for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Jung-Hee Hong
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea
| | - Ji-Eun Lee
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea.
| |
Collapse
|