1
|
He Y, Cheng M, Yang R, Li H, Lu Z, Jin Y, Feng J, Tu L. Research Progress on the Mechanism of Nanoparticles Crossing the Intestinal Epithelial Cell Membrane. Pharmaceutics 2023; 15:1816. [PMID: 37514003 PMCID: PMC10384977 DOI: 10.3390/pharmaceutics15071816] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Improving the stability of drugs in the gastrointestinal tract and their penetration ability in the mucosal layer by implementing a nanoparticle delivery strategy is currently a research focus in the pharmaceutical field. However, for most drugs, nanoparticles failed in enhancing their oral absorption on a large scale (4 folds or above), which hinders their clinical application. Recently, several researchers have proved that the intestinal epithelial cell membrane crossing behaviors of nanoparticles deeply influenced their oral absorption, and relevant reviews were rare. In this paper, we systematically review the behaviors of nanoparticles in the intestinal epithelial cell membrane and mainly focus on their intracellular mechanism. The three key complex intracellular processes of nanoparticles are described: uptake by intestinal epithelial cells on the apical side, intracellular transport and basal side exocytosis. We believe that this review will help scientists understand the in vivo performance of nanoparticles in the intestinal epithelial cell membrane and assist in the design of novel strategies for further improving the bioavailability of nanoparticles.
Collapse
Affiliation(s)
- Yunjie He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Meng Cheng
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ruyue Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Haocheng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Zhiyang Lu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
2
|
Skok K, Gradišnik L, Čelešnik H, Milojević M, Potočnik U, Jezernik G, Gorenjak M, Sobočan M, Takač I, Kavalar R, Maver U. MFUM-BrTNBC-1, a Newly Established Patient-Derived Triple-Negative Breast Cancer Cell Line: Molecular Characterisation, Genetic Stability, and Comprehensive Comparison with Commercial Breast Cancer Cell Lines. Cells 2021; 11:cells11010117. [PMID: 35011679 PMCID: PMC8749978 DOI: 10.3390/cells11010117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a breast cancer (BC) subtype that accounts for approximately 15–20% of all BC cases. Cancer cell lines (CLs) provide an efficient way to model the disease. We have recently isolated a patient-derived triple-negative BC CL MFUM-BrTNBC-1 and performed a detailed morphological and molecular characterisation and a comprehensive comparison with three commercial BC CLs (MCF-7, MDA-MB-231, MDA-MB-453). Light and fluorescence microscopy were used for morphological studies; immunocytochemical staining for hormone receptor, p53 and Ki67 status; RNA sequencing, qRT-PCR and STR analysis for molecular characterisation; and biomedical image analysis for comparative phenotypical analysis. The patient tissue-derived MFUM-BrTNBC-1 maintained the primary triple-negative receptor status. STR analysis showed a stable and unique STR profile up to the 6th passage. MFUM-BrTNBC-1 expressed EMT transition markers and displayed changes in several cancer-related pathways (MAPK, Wnt and PI3K signalling; nucleotide excision repair; and SWI/SNF chromatin remodelling). Morphologically, MFUM-BrTNBC-1 differed from the commercial TNBC CL MDA-MB-231. The advantages of MFUM-BrTNBC-1 are its isolation from a primary tumour, rather than a metastatic site; good growth characteristics; phenotype identical to primary tissue; complete records of origin; a unique identifier; complete, unique STR profile; quantifiable morphological properties; and genetic stability up to (at least) the 6th passage.
Collapse
Affiliation(s)
- Kristijan Skok
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Correspondence: (K.S.); (U.M.); Tel.: +43-316-5466-5541 (K.S.); +386-2-234-5823 (U.M.)
| | - Lidija Gradišnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
| | - Helena Čelešnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Faculty of Chemistry & Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Marko Milojević
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
| | - Uroš Potočnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Faculty of Chemistry & Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Gregor Jezernik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
| | - Mario Gorenjak
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
| | - Monika Sobočan
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Division for Gynecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Iztok Takač
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Division for Gynecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Rajko Kavalar
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Department of Pathology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.G.); (H.Č.); (M.M.); (U.P.); (G.J.); (M.G.); (M.S.); (I.T.); (R.K.)
- Correspondence: (K.S.); (U.M.); Tel.: +43-316-5466-5541 (K.S.); +386-2-234-5823 (U.M.)
| |
Collapse
|
3
|
Investigating the Viability of Epithelial Cells on Polymer Based Thin-Films. Polymers (Basel) 2021; 13:polym13142311. [PMID: 34301068 PMCID: PMC8309445 DOI: 10.3390/polym13142311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
The development of novel polymer-based materials opens up possibilities for several novel applications, such as advanced wound dressings, bioinks for 3D biofabrication, drug delivery systems, etc. The aim of this study was to evaluate the viability of vascular and intestinal epithelial cells on different polymers as a selection procedure for more advanced cell-polymer applications. In addition, possible correlations between increased cell viability and material properties were investigated. Twelve polymers were selected, and thin films were prepared by dissolution and spin coating on silicon wafers. The prepared thin films were structurally characterized by Fourier transform infrared spectroscopy, atomic force microscopy, and goniometry. Their biocompatibility was determined using two epithelial cell lines (human umbilical vein endothelial cells and human intestinal epithelial cells), assessing the metabolic activity, cell density, and morphology. The tested cell lines showed different preferences regarding the culture substrate. No clear correlation was found between viability and individual substrate characteristics, suggesting that complex synergistic effects may play an important role in substrate design. These results show that a systematic approach is required to compare the biocompatibility of simple cell culture substrates as well as more complex applications (e.g., bioinks).
Collapse
|
4
|
Different Cannabis sativa Extraction Methods Result in Different Biological Activities against a Colon Cancer Cell Line and Healthy Colon Cells. PLANTS 2021; 10:plants10030566. [PMID: 33802757 PMCID: PMC8002592 DOI: 10.3390/plants10030566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/14/2023]
Abstract
Cannabis sativa is one of the oldest medicinal plants used by humans, containing hundreds of bioactive compounds. The biological effects and interplay of these compounds are far from fully understood, although the plant’s therapeutic effects are beyond doubt. Extraction methods for these compounds are becoming an integral part of modern Cannabis-based medicine. Still, little is known about how different methods affect the final composition of Cannabis extracts and thus, their therapeutic effects. In this study, different extraction methods were tested, namely maceration, Soxhlet, ultrasound-assisted extraction (UAE), and supercritical CO2 extraction methods. The obtained extracts were evaluated for their cannabinoid content, antioxidant properties, and in vitro bioactivity on human colon cancer and healthy colon cells. Our data suggest that Cannabis extracts, when properly prepared, can significantly decrease cancer cell viability while protecting healthy cells from cytotoxic effects. However, post-processing of extracts poses a significant limitation in predicting therapeutic response based on the composition of the crude extract, as it affects not only the actual amounts of the respective cannabinoids but also their relative ratio to the primary extracts. These effects must be carefully considered in the future preparations of new therapeutic extracts.
Collapse
|
5
|
Skok K, Gradišnik L, Maver U, Kozar N, Sobočan M, Takač I, Arko D, Kavalar R. Gynaecological cancers and their cell lines. J Cell Mol Med 2021; 25:3680-3698. [PMID: 33650759 PMCID: PMC8051715 DOI: 10.1111/jcmm.16397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cell lines are widely used for various research purposes including cancer and drug research. Recently, there have been studies that pointed to discrepancies in the literature and usage of cell lines. That is why we have prepared a comprehensive overview of the most common gynaecological cancer cell lines, their literature, a list of currently available cell lines, and new findings compared with the original studies. A literature review was conducted via MEDLINE, PubMed and ScienceDirect for reviews in the last 5 years to identify research and other studies related to gynaecological cancer cell lines. We present an overview of the current literature with reference to the original studies and pointed to certain inconsistencies in the literature. The adherence to culturing rulesets and the international guidelines helps in minimizing replication failure between institutions. Evidence from the latest research suggests that despite certain drawbacks, variations of cancer cell lines can also be useful in regard to a more diverse genomic landscape.
Collapse
Affiliation(s)
- Kristijan Skok
- Department of pathology, General Hospital Graz II, Graz, Austria.,Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Nejc Kozar
- Division of Gynecology and Perinatology, University Medical Center Maribor, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Monika Sobočan
- Division of Gynecology and Perinatology, University Medical Center Maribor, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Iztok Takač
- Division of Gynecology and Perinatology, University Medical Center Maribor, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Darja Arko
- Division of Gynecology and Perinatology, University Medical Center Maribor, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rajko Kavalar
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Department of Pathology, University Medical Center Maribor, Maribor, Slovenia
| |
Collapse
|
6
|
Gradišnik L, Milojević M, Velnar T, Maver U. Isolation, characterisation and phagocytic function of human macrophages from human peripheral blood. Mol Biol Rep 2020; 47:6929-6940. [PMID: 32876844 DOI: 10.1007/s11033-020-05751-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Macrophages are among the most important cells of the immune system. Among other functions, they take part in almost all defense actions against foreign bodies and bacteria, being particularly important in infections, wound healing, and foreign body reactions. Considering their importance for the health of the human body, as well as their important role in several diseases, the in vitro studies based on these cells, are a crucial research field. Taking all mentioned into account, this study describes a simple isolation method of human macrophages (MFUM-HMP-001 and MFUM-HMP-002 cell lines) from peripheral blood. For this purpose, the morphology, the viability, and the phagocytotic activity of the isolated cells were tested. The Immunostaining of MFUM-HMP-001 and MFUM-HMP-002 cells confirmed the macrophage cell markers CD68, CD80, and CD163/M130. The phagocytotic activity was marked in both MFUM-HMP-001 and MFUM-HMP-002 cells, as was the phagocytosis of the pHrodo green Escherichia coli bioparticles conjugates, which was enhanced with the addition of lipopolysaccharide. The cells were stable and exhibited good growth. According to our results, both cell lines are useful for the development of novel macrophage cell-based in vitro models.
Collapse
Affiliation(s)
- Lidija Gradišnik
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
- AMEU-ECM Maribor, Slovenska 17, 2000, Maribor, Slovenia
| | - Marko Milojević
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Tomaž Velnar
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- AMEU-ECM Maribor, Slovenska 17, 2000, Maribor, Slovenia.
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia.
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- Faculty of Medicine, Department of Pharmacology, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
7
|
Gu Y, Hou W, Shen XY, Zhuo SX, Zhang HR, Ji MH, Chen MJ, Guo YY. CYP2C9, a Metabolic CYP450s Enzyme, Plays Critical Roles in Activating Ellagic Acid in Human Intestinal Epithelial Cells. Med Sci Monit 2020; 26:e923104. [PMID: 32453717 PMCID: PMC7271682 DOI: 10.12659/msm.923104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background The metabolic processing of ellagic acid (EA) by cytochrome P450s (CYP450s) expressed in the intestines is unclear. This study aimed to investigate the effects of CYP450s that are highly expressed in HIEC cells on metabolic activity of EA. Material/Methods HIEC cell models expressing 2B6, 2C9, 2D6, and 3A4 were generated by stably transfecting with CYP450 genes using a lentivirus system. PCR and Western blot assay were used to detect expression of CYP450s. Cell Counting Kit-8 (CCK-8) assay was used to examine the cytotoxic effect of EA on CYP450s-expressing HIEC cells. Flow cytometry was employed to evaluate apoptosis of CYP450s-expressing HIEC cells after addition of EA. Metabolic clearance rate of EA in vitro by the constructed HIEC cell models was measured using UPLC-MS method. Results CYP450s expression HIEC cell models, including CYP2B6, CYP2C9, CYP2D6, and CYP3A4, were successfully established. EA treatment at different concentrations (10 μg/mL and 50 μg/mL) remarkably decreased cell viability of HIEC cells expressing CYP2C9 compared to the untreated control (p<0.01), in a concentration-dependent and time-dependent manner. Expression of CYP2C9 significantly increased the apoptosis rate of HIEC cells treated with EA compared to that in HIEC cells without any CYP450s expression (p<0.01). The clearance rate of EA in CYP2B6-expressing (p<0.05) and CYP2C9-expressing (p<0.001) HIEC cell models was remarkably reduced after 120 min. Conclusions Ellagic acid was effectively activated by CYP2C9 in HIEC cells and caused cytotoxicity and apoptosis of HIEC cells. Therefore, CYP2C9 is main metabolic enzyme of EA when compared to other CYP450 HIEC cell models.
Collapse
Affiliation(s)
- Yang Gu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Wei Hou
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xin-Yu Shen
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Shi-Xuan Zhuo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Hao-Ran Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Ming-Hui Ji
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Mei-Juan Chen
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Yuan-Yuan Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
8
|
Abstract
Endometrial cancer is one of the most common gynaecological malignancies worldwide. One type of research in this field is the growing of cell lines (CLs) and cultures, which can be used to explore the biological mechanisms of cancer. The purpose of this review is to offer an overview of the current literature and highlight the importance of correct CL studies. We carried out a literature analysis of more than 60 articles from the Pubmed, Medline databases that were almost exclusively published in indexed journals in the last 10 years as well as the primary originating scientific studies of specific CLs. We then summarized the newest findings and recommendations. Cell lines are becoming widely used as in vitro tumour models. Recent work has shown inconsistencies in nomenclature and culturing of CLs. Their genomic evolution leads to a high degree of variation across CL strains therefore it is of the utmost importance to recognize the variability within laboratory cancer models. Laboratories must adapt, incorporate additional characterisation techniques and view this situation as an opportunity to improve the reproducibility of pre-clinical cancer research. The authors offer a comprehensive literature review about endometrial cancer CLs, a review of the current literature and advice on culturing CLs.
Collapse
|
9
|
Skok K, Gradišnik L, Čelešnik H, Potočnik U, Kavalar R, Takač I, Maver U. Isolation and characterization of the first Slovenian human triple-negative breast cancer cell line. Breast J 2019; 26:328-330. [PMID: 31749235 DOI: 10.1111/tbj.13695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Kristijan Skok
- Faculty of Medicine, Institute of Biomedical Sciences and Department of Pharmacology, University of Maribor, Maribor, Slovenia.,Department of pathology, General Hospital Graz II, Location West, Graz, Austria
| | - Lidija Gradišnik
- Faculty of Medicine, Institute of Biomedical Sciences and Department of Pharmacology, University of Maribor, Maribor, Slovenia
| | - Helena Čelešnik
- Faculty of Medicine, Center of Human Molecular Genetics and Pharmacogenomics, University of Maribor, Maribor, Slovenia.,Faculty of Chemistry & Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Medicine, Center of Human Molecular Genetics and Pharmacogenomics, University of Maribor, Maribor, Slovenia.,Faculty of Chemistry & Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Rajko Kavalar
- Department of Pathology, University Medical Centre Maribor, Maribor, Slovenia
| | - Iztok Takač
- Faculty of Medicine, Department of Gynaecology and Obstetrics, University of Maribor, Maribor, Slovenia.,Department of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences and Department of Pharmacology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
10
|
Farquhar MJ, McCluskey E, Staunton R, Hughes KR, Coltherd JC. Characterisation of a canine epithelial cell line for modelling the intestinal barrier. Altern Lab Anim 2018; 46:115-132. [PMID: 30022673 DOI: 10.1177/026119291804600304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Little is known about how food interacts with the intestinal epithelium during the digestion process. However, it is known that ingredients in food can modulate the intestinal barrier, and have the potential to disrupt homeostasis of the gut. Here, we characterise a conditionally immortalised canine intestinal epithelial cell (cIEC) line for use in in vitro assays, to assess the effect of food ingredients on intestinal barrier function, permeability, cell health, and inflammation. Microscopy and flow cytometry confirmed that cIECs had a phenotype consistent with those of epithelial origin, and were able to differentiate to mature enterocytes. The cIECs also formed a monolayer when grown on Transwell® inserts, producing functional tight junctions between the cells. In contrast to the human-derived Caco-2 cell line, transepithelial electrical resistance (TEER) was increased in cIECs in response to two different raw ingredients. The exposure of cIECs to known inflammatory stimuli and raw ingredients induced the nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-?B). This work demonstrates the value of a unique cIEC in vitro model to study the effects of food ingredients on canine intestinal function and health, and supports continued efforts to reduce and refine the use of animals in scientific research.
Collapse
Affiliation(s)
| | - Emma McCluskey
- WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, U
| | - Ruth Staunton
- WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, U
| | - Kevin R Hughes
- WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, U
| | | |
Collapse
|
11
|
Brus M, Gradišnik L, Trapecar M, Škorjanc D, Frangež R. Beneficial effects of water-soluble chestnut (Castanea sativa Mill.) tannin extract on chicken small intestinal epithelial cell culture. Poult Sci 2018; 97:1271-1282. [PMID: 29444319 DOI: 10.3382/ps/pex424] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
Feed and water supplementation with powdered hydrolyzable tannins from chestnut represents a valuable alternative strategy to antibiotics in animal nutrition. In this study, we evaluated the effects and safety of a water-soluble form of chestnut tannin (WST) in an in vitro model of chicken small intestinal epithelial cells (CSIEC). A chicken cell culture was established, and WST in concentrations of 0.025, 0.05, 0.1, and 0.2% were tested for cytotoxicity, cell proliferation, metabolic activity, production of reactive oxygen species, intracellular antioxidative potential, genotoxicity, and influence on the epithelia cell cycle. The tested concentrations showed a significant (P < 0.05) greater proliferative effect on CSIEC than the control medium (maximal proliferation at 0.1% WST as determined by optical density measurements). The 0.2% concentration of WST was cytotoxic, causing significantly higher (P < 0.05) nitric oxide and hydrogen peroxide production but with no short-term genotoxicity. Although increasing the concentration caused a decline in the metabolism of challenged cells (the lowest at 0.1% WST), metabolic activity remained higher than that in control cells. The antioxidant potential was 75% better and significantly (P < 0.05) higher in the 0.1% WST cultured cells compared to control. In conclusion, the cultured CSIEC are useful tools in basic and clinical research for the study of intestinal physiology, as they retain physiological and biochemical properties and epithelial morphology close to the original tissue and, in many ways, reflect the in vivo state. Our results indicate that WST exert a beneficial effect on intestinal epithelia, since they: i) stimulate proliferation of enterocytes; ii) increase antioxidative potential; iii) have no genotoxic effect; and iv) do not affect cellular metabolism. Our results reinforce the importance of WST as promising candidates for further evaluation and use in commercial broiler farm production.
Collapse
Affiliation(s)
- M Brus
- Department of Animal Science, Faculty of Agriculture and Life Sciences, University of Maribor, Maribor, Slovenia
| | - L Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - M Trapecar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - D Škorjanc
- Department of Animal Science, Faculty of Agriculture and Life Sciences, University of Maribor, Maribor, Slovenia
| | - R Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Picariello G, Ferranti P, Addeo F. Use of brush border membrane vesicles to simulate the human intestinal digestion. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Fu L, Wei LW, Zhao MD, Zhu JL, Chen SY, Jia XB, Lai SJ. Investigation of JAKs/STAT-3 in lipopolysaccharide-induced intestinal epithelial cells. Clin Exp Immunol 2016; 186:75-85. [PMID: 27357529 DOI: 10.1111/cei.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 12/30/2022] Open
Abstract
Janus-activated kinase (JAKs)-signal transducer and activator of transcription 3 (STAT-3) signalling play critical roles in immunoregulation and immunopathology, which involve inflammatory responses and enteritis. JAK phosphorylates STAT-3 in response to stimulation by cytokines or growth factors, and then activates or represses the gene expression. STAT-3 is activated persistently in cancer cells and contributes to the malignant progression of various types of cancer and inflammation. To elucidate the different roles of JAKs in the activation of STAT-3, the lipopolysaccharide-induced primary intestinal epithelial cell (IEC) acute inflammatory model was established. Small interference RNAs (siRNAs) were then employed to attenuate the expression levels of JAKs. Real-time quantitative reverse transcription-polymerase chain reaction (PCR) (qRT-PCR) revealed that JAK mRNA levels were reduced efficiently by JAK-specific siRNAs. Under the IEC inflammatory model transfected with si-JAK, which equates to effective silencing, qRT-PCR and Western blot assays, suggested that knockdowns of JAK attenuated the JAK-induced down-regulation of STAT-3 at the mRNA or protein levels. In particular, JAK1 played a key role, which was consistent with the RNA-Seq results. Subsequently, the expression levels of proinflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α were down-regulated in the IEC inflammatory model transfected with si-JAK1. JAK1 appears as a direct activator for STAT-3, whereas treatments targeting JAK1 repressed STAT-3 sufficiently pathways in the IEC inflammatory model. Therefore, the control of JAK1 using siRNAs has the potential to be an effective strategy against enteritis.
Collapse
Affiliation(s)
- L Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - L-W Wei
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - M-D Zhao
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - J-L Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - S-Y Chen
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - X-B Jia
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - S-J Lai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|