1
|
Chen W, Johnston IN. Meta-analyses of executive function deficits in chemotherapy-treated rodent models. Neurosci Biobehav Rev 2025; 173:106131. [PMID: 40194612 DOI: 10.1016/j.neubiorev.2025.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
People diagnosed with cancer who undergo chemotherapy commonly encounter cognitive changes, particularly in executive functions (EFs). EFs support goal-directed behaviours, with EF deficits implicated in various neurocognitive impairments. We conducted five meta-analyses of the rodent models to investigate the impact of chemotherapy across five EF domains. A systematic search across PubMed, Web of Science, Scopus, and PsycINFO yielded 56 eligible papers. Our findings supported the clinical literature suggesting the selective impact of chemotherapy on different EF domains. Specifically, chemotherapy-treated animals performed significantly more poorly than controls in tasks assessing working memory, behavioural flexibility, and problem-solving, with no significant group differences in inhibition or attention. Subgroup analyses revealed that alkylating agents, antitumor antibiotics, and combination therapies were strongly associated with working memory deficits, whereas mitotic inhibitors were not. Rodent species, strain, age, sex, number of treatments, and time of behavioural assessment since the end of treatment did not moderate the drug effect on any assessed EF domains. To increase the generalisability and translational validity of the results, the overall reporting quality of animal studies needs to be improved with more details on randomisation, blinding, sample sizes, and criteria for animal exclusions.
Collapse
Affiliation(s)
- Weiye Chen
- School of Psychology, University of Sydney, NSW 2006, Australia
| | - Ian N Johnston
- School of Psychology, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B 2024; 14:2901-2926. [PMID: 39027258 PMCID: PMC11252465 DOI: 10.1016/j.apsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 07/20/2024] Open
Abstract
Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Medical Research Institute, Southwest University, Chongqing 400715, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Song J, Solmi M, Carvalho AF, Shin JI, Ioannidis JP. Twelve years after the ARRIVE guidelines: Animal research has not yet arrived at high standards. Lab Anim 2024; 58:109-115. [PMID: 37728936 DOI: 10.1177/00236772231181658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The reproducibility crisis across animal studies jeopardizes the credibility of the main findings derived from animal research, even though these findings are critical for informing human studies. To clarify and improve transparency among animal studies, the ARRIVE reporting guidelines were first announced in 2010 and upgraded to version 2.0 in 2020. However, compliance with and awareness of those reporting guidelines has remained suboptimal. Journal editors should encourage the authors to adhere to those guidelines. Authors, editors, referees, and reviewers should be aware of the ARRIVE guideline 2.0 when assessing and evaluating the methodology and findings of animal studies. However, we should also question whether reporting guidelines alone can change a research culture and improve the reproducibility of animal investigations. Reported research may not reflect actual research. Large segments of animal research efforts are wasted because of poor design choices and because of non-publication rather than suboptimal reporting. Better training of the scientific workforce, interventions at improving animal research at the design stage, registration practices, and alignment of the reward system with the publication of rigorous animal research may achieve more than reporting guidelines alone.
Collapse
Affiliation(s)
- Junmin Song
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, USA
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, Canada
- Department of Mental Health, The Ottawa Hospital, Ontario, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Andre F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Center for Medical Education Training and Professional Development in Yonsei-Donggok Medical Education Institute, Seoul, Republic of Korea
- Severance Underwood Meta-research Center, Institute of Convergence Science, Yonsei University, Seoul, South Korea
| | - John Pa Ioannidis
- Departments of Medicine, Epidemiology and Population Health, Biomedical Data Science, and Statistics, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, USA
| |
Collapse
|
4
|
Kuil LE, Varkevisser TMCK, Huisman MH, Jansen M, Bunt J, Compter A, Ket H, Schagen SB, Meeteren AYNSV, Partanen M. Artificial and natural interventions for chemotherapy- and / or radiotherapy-induced cognitive impairment: A systematic review of animal studies. Neurosci Biobehav Rev 2024; 157:105514. [PMID: 38135266 DOI: 10.1016/j.neubiorev.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Cancer survivors frequently experience cognitive impairments. This systematic review assessed animal literature to identify artificial (pharmaceutical) or natural interventions (plant/endogenously-derived) to reduce treatment-related cognitive impairments. METHODS PubMed, EMBASE, PsycINFO, Web of Science, and Scopus were searched and SYRCLE's tool was used for risk of bias assessment of the 134 included articles. RESULTS High variability was observed and risk of bias analysis showed overall poor quality of reporting. Results generally showed positive effects in the intervention group versus cancer-therapy only group (67% of 156 cognitive measures), with only 15 (7%) measures reporting cognitive impairment despite intervention. Both artificial (61%) and natural (75%) interventions prevented cognitive impairment. Artificial interventions involving GSK3B inhibitors, PLX5622, and NMDA receptor antagonists, and natural interventions utilizing melatonin, curcumin, and N-acetylcysteine, showed most consistent outcomes. CONCLUSIONS Both artificial and natural interventions may prevent cognitive impairment in rodents, which merit consideration in future clinical trials. Greater consistency in design is needed to enhance the generalizability across studies, including timing of cognitive tests and description of treatments and interventions.
Collapse
Affiliation(s)
- L E Kuil
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - T M C K Varkevisser
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M H Huisman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M Jansen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - J Bunt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - A Compter
- Department of Neuro-Oncology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - H Ket
- Universiteitsbibliotheek, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - S B Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | - M Partanen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
5
|
Haller OJ, Semendric I, George RP, Collins-Praino LE, Whittaker AL. The effectiveness of anti-inflammatory agents in reducing chemotherapy-induced cognitive impairment in preclinical models - A systematic review. Neurosci Biobehav Rev 2023; 148:105120. [PMID: 36906244 DOI: 10.1016/j.neubiorev.2023.105120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a debilitating condition resulting from chemotherapy administration for cancer treatment. CICI is characterised by various cognitive impairments, including issues with learning, memory, and concentration, impacting quality of life. Several neural mechanisms are proposed to drive CICI, including inflammation, therefore, anti-inflammatory agents could ameliorate such impairments. Research is still in the preclinical stage; however, the efficacy of anti-inflammatories to reduce CICI in animal models is unknown. Therefore, a systematic review was conducted, with searches performed in PubMed, Scopus, Embase, PsycInfo and Cochrane Library. A total of 64 studies were included, and of the 50 agents identified, 41 (82%) reduced CICI. Interestingly, while non-traditional anti-inflammatory agents and natural compounds reduced impairment, the traditional agents were unsuccessful. Such results must be taken with caution due to the heterogeneity observed in terms of methods employed. Nevertheless, preliminary evidence suggests anti-inflammatory agents could be beneficial for treating CICI, although it may be critical to think beyond the use of traditional anti-inflammatories when considering which specific compounds to prioritise in development.
Collapse
Affiliation(s)
- Olivia J Haller
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Ines Semendric
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rebecca P George
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia
| | | | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia.
| |
Collapse
|
6
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|