1
|
Demir ZEF, Sheybani ND. Therapeutic Ultrasound for Multimodal Cancer Treatment: A Spotlight on Breast Cancer. Annu Rev Biomed Eng 2025; 27:371-402. [PMID: 39971377 DOI: 10.1146/annurev-bioeng-103023-111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cancer remains a leading cause of mortality worldwide, and the demand for improved efficacy, precision, and safety of management options has never been greater. Focused ultrasound (FUS) is a rapidly emerging strategy for nonionizing, noninvasive intervention that holds promise for the multimodal treatment of solid cancers. Owing to its versatile array of bioeffects, this technology is now being evaluated across preclinical and clinical oncology trials for tumor ablation, therapeutic delivery, radiosensitization, sonodynamic therapy, and enhancement of tumor-specific immune responses. Given the breadth of this burgeoning domain, this review places a spotlight on recent advancements in breast cancer care to exemplify the multifaceted role of FUS technology for oncology indications-outlining physical principles of FUS-mediated thermal and mechanical bioeffects, giving an overview of results from recent preclinical and clinical studies investigating FUS with and without adjunct therapeutics in primary or disseminated breast cancer settings, and offering perspectives on the future of the field.
Collapse
Affiliation(s)
- Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; ,
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; ,
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Trovarelli G, Rizzo A, Zinnarello FD, Cerchiaro M, Angelini A, Pala E, Ruggieri P. Modern Treatment of Skeletal Metastases: Multidisciplinarity and the Concept of Oligometastasis in the Recent Literature. Curr Oncol 2025; 32:226. [PMID: 40277781 PMCID: PMC12025461 DOI: 10.3390/curroncol32040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Bone metastases are a major concern in cancer management since they significantly contribute to morbidity and mortality. Metastatic lesions, commonly arising from breast, prostate, lung, and kidney cancers, affect approximately 25% of cancer patients, leading to severe complications such as pain, fractures, and neurological deficits. This narrative review explores contemporary approaches to bone metastases, emphasizing a multidisciplinary strategy and the evolving concept of oligometastatic disease. Oligometastases, defined by limited metastatic spread (1-5 lesions), offer a potential window for curative treatment through aggressive interventions, including stereotactic ablative radiotherapy and resection surgery. Tumor boards, integrating systemic therapies with local interventions, are crucial to optimize treatment. Despite promising results, gaps remain in defining optimal treatment sequences and refining patient selection criteria. Future research should focus on personalized approaches, leveraging biomarkers and advanced imaging to enhance outcomes and the quality of life in patients with bone metastases.
Collapse
Affiliation(s)
- Giulia Trovarelli
- Department of Orthopedics and Orthopedic Oncology, University of Padua, 35122 Padua, Italy; (G.T.); (F.D.Z.); (M.C.); (A.A.); (E.P.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35122 Padua, Italy
| | - Arianna Rizzo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Felicia Deborah Zinnarello
- Department of Orthopedics and Orthopedic Oncology, University of Padua, 35122 Padua, Italy; (G.T.); (F.D.Z.); (M.C.); (A.A.); (E.P.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35122 Padua, Italy
| | - Mariachiara Cerchiaro
- Department of Orthopedics and Orthopedic Oncology, University of Padua, 35122 Padua, Italy; (G.T.); (F.D.Z.); (M.C.); (A.A.); (E.P.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35122 Padua, Italy
| | - Andrea Angelini
- Department of Orthopedics and Orthopedic Oncology, University of Padua, 35122 Padua, Italy; (G.T.); (F.D.Z.); (M.C.); (A.A.); (E.P.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35122 Padua, Italy
| | - Elisa Pala
- Department of Orthopedics and Orthopedic Oncology, University of Padua, 35122 Padua, Italy; (G.T.); (F.D.Z.); (M.C.); (A.A.); (E.P.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35122 Padua, Italy
| | - Pietro Ruggieri
- Department of Orthopedics and Orthopedic Oncology, University of Padua, 35122 Padua, Italy; (G.T.); (F.D.Z.); (M.C.); (A.A.); (E.P.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35122 Padua, Italy
| |
Collapse
|
3
|
DeWitt M, Demir ZEF, Sherlock T, Brenin DR, Sheybani ND. MR Imaging-Guided Focused Ultrasound for Breast Tumors. Magn Reson Imaging Clin N Am 2024; 32:593-613. [PMID: 39322350 DOI: 10.1016/j.mric.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Breast tumors remain a complex and prevalent health burden impacting millions of individuals worldwide. Challenges in treatment arise from the invasive nature of traditional surgery and, in malignancies, the complexity of treating metastatic disease. The development of noninvasive treatment alternatives is critical for improving patient outcomes and quality of life. This review aims to explore the advancements and applications of focused ultrasound (FUS) technology over the past 2 decades. FUS offers a promising noninvasive, nonionizing intervention strategy in breast tumors including primary breast cancer, fibroadenomas, and metastatic breast cancer.
Collapse
Affiliation(s)
- Matthew DeWitt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, USA
| | - Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Thomas Sherlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - David R Brenin
- Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, USA; Division of Surgical Oncology, University of Virginia Health System, Charlottesville, VA, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, USA; Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Yao PF, Hu A, Mansour F, Nadeem I, Jiang Y, Athreya S. Image-Guided Energy Ablation for Palliation of Painful Bony Metastases-A Systematic Review. J Vasc Interv Radiol 2024; 35:1268-1277. [PMID: 38815751 DOI: 10.1016/j.jvir.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
PURPOSE To analyze the effectiveness of image-guided energy ablation techniques with and without concurrent therapies in providing palliative pain relief in patients with bone metastases. MATERIALS AND METHODS Ovid Embase, Ovid Medline, and Pubmed were searched from inception to April 14, 2023, using search terms related to bone lesions and MeSH terms regarding ablation therapy. English peer-reviewed primary articles were included that reported pain scores following image-guided energy-based ablation of bone metastases. Exclusion criteria included nonpalliative treatment, pain scores associated with specific treatment modalities not reported, and nonmetastatic bone lesions. Mean percentage reduction in pain score was calculated. RESULTS Of the 1,396 studies screened, 54 were included. All but 1 study demonstrated decreased pain scores at final follow-up. Mean reductions in pain scores at final follow-up were 49% for radiofrequency (RF) ablation, 58% for RF ablation and adjunct, 54% for cryoablation (CA), 72% for cryoablation and adjunct (CA-A), 48% for microwave ablation (MWA), 81% for microwave ablation and adjunct (MWA-A), and 64% for high-intensity focused ultrasound (US). Postprocedural adverse event rates were 4.9% for RF ablation, 34.8% for RF ablation and adjunct, 9.6% for CA, 12.0% for CA-A, 48.9% for MWA, 33.5% for MWA-A, and 17.0% for high-intensity focused US. CONCLUSIONS Image-guided energy ablation demonstrated consistently strong reduction in pain across all modalities, with variable postprocedural adverse event rates. Owing to heterogeneity of included studies, quantitative analysis was not appropriate. Future primary research should focus on creating consistent prospective studies with established statistical power, explicit documentation, and comparison with other techniques.
Collapse
Affiliation(s)
- Patrick F Yao
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Angela Hu
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Fadi Mansour
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ibrahim Nadeem
- Department of Radiology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Yixin Jiang
- Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sriharsha Athreya
- Department of Radiology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Niagara Health System, St. Catherines General Site, St. Catherines, Ontario, Canada
| |
Collapse
|
5
|
Sereno M, Franco SR, de la Reina L, Campo-Cañaveral de la Cruz JL, Muñoz de Legaría M, Casado Saénz E. Conversion in a Resectable Tumor after Denosumab Neoadjuvant in a Large Dorsal Giant Cells Tumor: A Case Report and a Literature Review. Curr Oncol 2023; 30:9335-9345. [PMID: 37887575 PMCID: PMC10605573 DOI: 10.3390/curroncol30100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Giant cell tumors of bone are a rare entity, usually occurring in young patients and characteristically arising in the long bones. The spinal location is rare and usually presents with pain and/or neurological symptoms. The treatment of choice is surgery. Treatment with Denosumab, a bisphosphonate inhibitor of RANK-L, which is highly expressed in these tumors, has shown extensive activity in unresectable patients or those undergoing incomplete surgery. Preoperative treatment with this drug is gaining increasing interest, as its high potency in tumor reduction in this subtype of neoplasm has allowed resectability in selected patients. We present the case of a young patient with a large spinal tumor who, after neoadjuvant Denosumab, underwent complete en bloc surgery with clean margins and a great pathological response.
Collapse
Affiliation(s)
- María Sereno
- Medical Oncology Department, Infanta Sofía University Hospital, Europe Avenue 32, San Sebastián de los Reyes, 28702 Madrid, Spain; (S.R.F.); (E.C.S.)
- European University of Madrid, Medicine Departtment, Calle Tajo 1, Villaviciosa de Odón, 28745 Madrid, Spain;
- FIIB HUIS HHEN, 28703 Madrid, Spain
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, 28049 Madrid, Spain
| | - Silvia Roa Franco
- Medical Oncology Department, Infanta Sofía University Hospital, Europe Avenue 32, San Sebastián de los Reyes, 28702 Madrid, Spain; (S.R.F.); (E.C.S.)
- FIIB HUIS HHEN, 28703 Madrid, Spain
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, 28049 Madrid, Spain
| | - Laura de la Reina
- Neurosurgeon, Neurosurgery Department, Puerta de Hierro University Hospital, C. Joaquín Rodrigo, 1, Majadahonda, 28222 Madrid, Spain; (L.d.l.R.); (M.M.d.L.)
| | - José Luis Campo-Cañaveral de la Cruz
- European University of Madrid, Medicine Departtment, Calle Tajo 1, Villaviciosa de Odón, 28745 Madrid, Spain;
- Thoracic Surgery Department, Puerta de Hierro University Hospital, C. Joaquín Rodrigo, 1, Majadahonda, 28222 Madrid, Spain
| | - Marta Muñoz de Legaría
- Neurosurgeon, Neurosurgery Department, Puerta de Hierro University Hospital, C. Joaquín Rodrigo, 1, Majadahonda, 28222 Madrid, Spain; (L.d.l.R.); (M.M.d.L.)
- Pathology Department, Infanta Sofía University Hospital, Europe Avenue 32, San Sebastián de los Reyes, 28702 Madrid, Spain
| | - Enrique Casado Saénz
- Medical Oncology Department, Infanta Sofía University Hospital, Europe Avenue 32, San Sebastián de los Reyes, 28702 Madrid, Spain; (S.R.F.); (E.C.S.)
- European University of Madrid, Medicine Departtment, Calle Tajo 1, Villaviciosa de Odón, 28745 Madrid, Spain;
- FIIB HUIS HHEN, 28703 Madrid, Spain
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, 28049 Madrid, Spain
| |
Collapse
|
6
|
Zhu YQ, Zhao GC, Zheng CX, Yuan L, Yuan GB. Managing spindle cell sarcoma with surgery and high-intensity focused ultrasound: A case report. World J Clin Cases 2023; 11:6551-6557. [PMID: 37900255 PMCID: PMC10600997 DOI: 10.12998/wjcc.v11.i27.6551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Undifferentiated pleomorphic sarcomas, also known as spindle cell sarcomas, are a relatively uncommon subtype of soft tissue sarcomas in clinical practice. CASE SUMMARY We present a case report of a 69-year-old female patient who was diagnosed with undifferentiated spindle cell soft tissue sarcoma on her left thigh. Surgical excision was initially performed, but the patient experienced a local recurrence following multiple surgeries and radioactive particle implantations. High-intensity focused ultrasound (HIFU) was subsequently administered, resulting in complete ablation of the sarcoma without any significant complications other than bone damage at the treated site. However, approximately four months later, the patient experienced a broken lesion at the original location. After further diagnostic workup, the patient underwent additional surgery and is currently stable with a good quality of life. CONCLUSION HIFU has shown positive outcomes in achieving local control of limb spindle cell sarcoma, making it an effective non-invasive treatment option.
Collapse
Affiliation(s)
- Ying-Qiong Zhu
- Department of Endocrinology, People’s Hospital of Fengjie, Fengjie 404600, Chongqing, China
| | - Gan-Chao Zhao
- Department of Oncology, People’s Hospital of Fengjie, Fengjie 404600, Chongqing, China
| | - Chen-Xi Zheng
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lei Yuan
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Geng-Biao Yuan
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
7
|
Maleddu A, Zhu J, Clay MR, Wilky BA. Current therapies and future prospective for locally aggressive mesenchymal tumors. Front Oncol 2023; 13:1160239. [PMID: 37546427 PMCID: PMC10401592 DOI: 10.3389/fonc.2023.1160239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 08/08/2023] Open
Abstract
Locally aggressive mesenchymal tumors comprise a heterogeneous group of soft tissue and bone tumors with intermediate histology, incompletely understood biology, and highly variable natural history. Despite having a limited to absent ability to metastasize and excellent survival prognosis, locally aggressive mesenchymal tumors can be symptomatic, require prolonged and repeat treatments including surgery and chemotherapy, and can severely impact patients' quality of life. The management of locally aggressive tumors has evolved over the years with a focus on minimizing morbid treatments. Extensive oncologic surgeries and radiation are pillars of care for high grade sarcomas, however, play a more limited role in management of locally aggressive mesenchymal tumors, due to propensity for local recurrence despite resection, and the risk of transformation to a higher-grade entity following radiation. Patients should ideally be evaluated in specialized sarcoma centers that can coordinate complex multimodal decision-making, taking into consideration the individual patient's clinical presentation and history, as well as any available prognostic factors into customizing therapy. In this review, we aim to discuss the biology, clinical management, and future treatment frontiers for three representative locally aggressive mesenchymal tumors: desmoid-type fibromatosis (DF), tenosynovial giant cell tumor (TSGCT) and giant cell tumor of bone (GCTB). These entities challenge clinicians with their unpredictable behavior and responses to treatment, and still lack a well-defined standard of care despite recent progress with newly approved or promising experimental drugs.
Collapse
Affiliation(s)
- Alessandra Maleddu
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jessica Zhu
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Michael Roy Clay
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Breelyn Ann Wilky
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
8
|
McNabb E, Sharma D, Sannachi L, Giles A, Yang W, Czarnota GJ. MR-guided ultrasound-stimulated microbubble therapy enhances radiation-induced tumor response. Sci Rep 2023; 13:4487. [PMID: 36934140 PMCID: PMC10024768 DOI: 10.1038/s41598-023-30286-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/20/2023] Open
Abstract
High intensity focused ultrasound (HIFU) systems have been approved for therapeutic ultrasound delivery to cause tissue ablation or induced hyperthermia. Microbubble agents have also been used in combination with sonication exposures. These require temperature feedback and monitoring to prevent unstable cavitation and prevent excess tissue heating. Previous work has utilized lower power and pressure to oscillate microbubbles and transfer energy to endothelial cells in the absence of thermally induced damage that can radiosensitize tumors. This work investigated whether reduced acoustic power and pressure on a commercial available MR-integrated HIFU system could result in enhanced radiation-induced tumor response after exposure to ultrasound-stimulated microbubbles (USMB) therapy. A commercially available MR-integrated HIFU system was used with a hyperthermia system calibration provided by the manufacturer. The ultrasound transducer was calibrated to reach a peak negative pressure of - 750 kPa. Thirty male New Zealand white rabbits bearing human derived PC3 tumors were grouped to receive no treatment, 14 min of USMB, 8 Gy of radiation in a separate irradiation cabinet, or combined treatments. In vivo temperature changes were collected using MR thermometry at the tumor center and far-field muscle region. Tissues specimens were collected 24 h post radiation therapy. Tumor cell death was measured and compared to untreated controls through hematoxylin and eosin staining and immunohistochemical analysis. The desired peak negative pressure of - 750 kPa used for previous USMB occurred at approximately an input power of 5 W. Temperature changes were limited to under 4 °C in ten of twelve rabbits monitored. The median temperature in the far-field muscle region of the leg was 2.50 °C for groups receiving USMB alone or in combination with radiation. Finally, statistically significant tumor cell death was demonstrated using immunohistochemical analysis in the combined therapy group compared to untreated controls. A commercial MR-guided therapy HIFU system was able to effectively treat PC3 tumors in a rabbit model using USMB therapy in combination with radiation exposures. Future work could find the use of reduced power and pressure levels in a commercial MR-guided therapy system to mechanically stimulate microbubbles and damage endothelial cells without requiring high thermal doses to elicit an antitumor response.
Collapse
Affiliation(s)
- Evan McNabb
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Anoja Giles
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Wenyi Yang
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Yeo SY, Bratke G, Grüll H. High Intensity Focused Ultrasound for Treatment of Bone Malignancies-20 Years of History. Cancers (Basel) 2022; 15:cancers15010108. [PMID: 36612105 PMCID: PMC9817683 DOI: 10.3390/cancers15010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
High Intensity Focused Ultrasound (HIFU) is the only non-invasive method for percutaneous thermal ablation of tissue, with treatments typically performed either under magnetic resonance imaging or ultrasound guidance. Since this method allows efficient heating of bony structures, it has found not only early use in treatment of bone pain, but also in local treatment of malignant bone tumors. This review of 20 years of published studies shows that HIFU is a very efficient method for rapid pain relief, can provide local tumor control and has a very patient-friendly safety profile.
Collapse
Affiliation(s)
- Sin Yuin Yeo
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Correspondence:
| | - Grischa Bratke
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| |
Collapse
|
10
|
Gonzalez MR, Bryce-Alberti M, Pretell-Mazzini J. Management of Long Bones Metastatic Disease: Concepts That We All Know but Not Always Remember. Orthop Res Rev 2022; 14:393-406. [PMID: 36385751 PMCID: PMC9661996 DOI: 10.2147/orr.s379603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/05/2022] [Indexed: 01/28/2024] Open
Abstract
Bones are the third most common site of metastatic disease. Treatment is rarely curative; rather, it seeks to control disease progression and palliate symptoms. Imaging evaluation of a patient with symptoms of metastatic bone disease should begin with plain X-rays. Further imaging consists of a combination of (PET)-CT scan and bone scintigraphy. We recommend performing a biopsy after imaging workup has been conducted. Metastatic bone disease is managed with a combination of systemic treatment, radiotherapy (RT), and surgery. External beam RT (EBRT) is used for pain control and postoperatively after fracture stabilization. Single-fraction and multiple-fractions schemes are equally effective achieving pain control. Adequate assessment of fracture risk should guide the decision to stabilize an impending fracture. Despite low specificity, plain X-rays are the first tool to determine risk of impending fractures. CT scan offers a higher positive predictive value and can add diagnostic value. Surgical management depends on the patient's characteristics, tumor type, and location of fracture/bone stock. Fixation options include plate and screw fixation, intramedullary (IM) nailing, and endoprostheses. Despite widespread use, the need for prophylactic stabilization of the entire femur should be individually analyzed in each patient due to higher complication rates of long stems.
Collapse
Affiliation(s)
- Marcos R Gonzalez
- Facultad de Medicina Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Juan Pretell-Mazzini
- Miami Cancer Institute, Division of Orthopedic Oncology, Baptist Health System South Florida, Plantation, FL, USA
| |
Collapse
|
11
|
Liang X, Xue J, Ge X, Li J, Li H, Xue L, Di L, Tang W, Song G, Li Q, Jiang H, Zhao W, Lin F, Shao B, Yang X, Wu Z, Zhang T, Wang C, Guo Y. Safety, tolerability, and pharmacokinetics/pharmacodynamics of JMT103 in patients with bone metastases from solid tumors. Front Oncol 2022; 12:971594. [PMID: 35992822 PMCID: PMC9389458 DOI: 10.3389/fonc.2022.971594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastases are common complications of solid tumors. The outcome is poor despite major progress in cancer therapies. We describe a multicenter, open-label, phase 1, dose escalation and expansion trial of JMT103, a novel fully humanized receptor activator of nuclear factor kappa-B ligand (RANKL)-targeting monoclonal antibody, in adults with bone metastases from solid tumors. The study assessed the safety, tolerability, and pharmacokinetics/pharmacodynamics of JMT103. Patients received JMT103 at doses of 0.5, 1.0, 2.0, and 3.0 mg/kg every 4 weeks for 3 cycles. Among 59 patients enrolled, 20 and 39 patients participated in the dose-escalation and dose-expansion phases, respectively. One dose-limiting toxicity was observed at 2.0 mg/kg. The maximum tolerated dose was not determined. Treatment-related adverse events were reported in 29 (49.2%) patients, most commonly hypophosphatemia (30.5%), hypocalcemia (23.7%), and hypermagnesemia (10.2%). No treatment-related serious adverse events were reported. Two patients died due to disease progression, which were attributed to gastric cancer and lung neoplasm malignant respectively. Dose proportionality occurred between exposure levels and administered dose was within a dose range of 0.5 to 3.0 mg/kg. The suppression of urinary N-telopeptide corrected for creatinine was rapid, significant, and sustained across all doses of JMT103, with the median change from baseline ranging from –61.4% to –92.2% at day 141. JMT103 was well tolerated in patients with bone metastases from solid tumors, with a manageable safety profile. Bone antiresorptive activity shows the potential of JMT103 for treatment of bone metastases from solid tumors.Registration No.: NCT03550508; URL: https://www.clinicaltrials.gov/
Collapse
Affiliation(s)
- Xu Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiao Ge
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Ye Guo, ; Huiping Li,
| | - Liqiong Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijun Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wenbo Tang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guohong Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Qun Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hanfang Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei Zhao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengjuan Lin
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiugao Yang
- Clinical Sciences Division, CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co., Ltd, Shijiazhuang, China
| | - Zhufeng Wu
- Clinical Sciences Division, CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co., Ltd, Shijiazhuang, China
| | - Tianyi Zhang
- Clinical Sciences Division, CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co., Ltd, Shijiazhuang, China
| | - Chenchen Wang
- Clinical Sciences Division, CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co., Ltd, Shijiazhuang, China
| | - Ye Guo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Ye Guo, ; Huiping Li,
| |
Collapse
|
12
|
Minimally Invasive Interventional Procedures for Metastatic Bone Disease: A Comprehensive Review. Curr Oncol 2022; 29:4155-4177. [PMID: 35735441 PMCID: PMC9221897 DOI: 10.3390/curroncol29060332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Metastases are the main type of malignancy involving bone, which is the third most frequent site of metastatic carcinoma, after lung and liver. Skeletal-related events such as intractable pain, spinal cord compression, and pathologic fractures pose a serious burden on patients’ quality of life. For this reason, mini-invasive treatments for the management of bone metastases were developed with the goal of pain relief and functional status improvement. These techniques include embolization, thermal ablation, electrochemotherapy, cementoplasty, and MRI-guided high-intensity focused ultrasound. In order to achieve durable pain palliation and disease control, mini-invasive procedures are combined with chemotherapy, radiation therapy, surgery, or analgesics. The purpose of this review is to summarize the recently published literature regarding interventional radiology procedures in the treatment of cancer patients with bone metastases, focusing on the efficacy, complications, local disease control and recurrence rate.
Collapse
|