• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4712029)   Today's Articles (5442)
For: Rajivganthi C, Rihan FA, Lakshmanan S, Muthukumar P. Finite-time stability analysis for fractional-order Cohen–Grossberg BAM neural networks with time delays. Neural Comput Appl 2018;29:1309-20. [DOI: 10.1007/s00521-016-2641-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Number Cited by Other Article(s)
1
Huang C, Mo S, Cao J. Detections of bifurcation in a fractional-order Cohen-Grossberg neural network with multiple delays. Cogn Neurodyn 2024;18:1379-1396. [PMID: 38826673 PMCID: PMC11143155 DOI: 10.1007/s11571-023-09934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2022] [Accepted: 01/24/2023] [Indexed: 03/06/2023]  Open
2
Chen C, Li L, Mi L, Zhao D, Qin X. A novel fixed-time stability lemma and its application in the stability analysis of BAM neural networks. CHAOS (WOODBURY, N.Y.) 2023;33:083117. [PMID: 37549124 DOI: 10.1063/5.0154711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
3
Stamov T, Stamov G, Stamova I, Gospodinova E. Lyapunov approach to manifolds stability for impulsive Cohen-Grossberg-type conformable neural network models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023;20:15431-15455. [PMID: 37679186 DOI: 10.3934/mbe.2023689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
4
Li XY, Fan QL, Liu XZ, Wu KN. Boundary intermittent stabilization for delay reaction–diffusion cellular neural networks. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
5
Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.08.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
6
The Boundedness and the Global Mittag-Leffler Synchronization of Fractional-Order Inertial Cohen–Grossberg Neural Networks with Time Delays. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10648-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
7
Du F, Lu JG. New Criteria on Finite-Time Stability of Fractional-Order Hopfield Neural Networks With Time Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:3858-3866. [PMID: 32822312 DOI: 10.1109/tnnls.2020.3016038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
8
New results on finite-time stability of fractional-order neural networks with time-varying delay. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06339-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
9
Finite-Time Mittag–Leffler Synchronization of Neutral-Type Fractional-Order Neural Networks with Leakage Delay and Time-Varying Delays. MATHEMATICS 2020. [DOI: 10.3390/math8071146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
10
He J, Chen F, Lei T, Bi Q. Global adaptive matrix-projective synchronization of delayed fractional-order competitive neural network with different time scales. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-04728-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
11
Global Mittag-Leffler Boundedness for Fractional-Order Complex-Valued Cohen–Grossberg Neural Networks. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9790-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
12
Huang C, Cao J. Impact of leakage delay on bifurcation in high-order fractional BAM neural networks. Neural Netw 2017;98:223-235. [PMID: 29274499 DOI: 10.1016/j.neunet.2017.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
13
Dissipativity analysis of complex-valued BAM neural networks with time delay. Neural Comput Appl 2017. [DOI: 10.1007/s00521-017-2985-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA