1
|
AlSereidi A, Salih SQM, Mohammed RT, Zaidan A, Albayati H, Pamucar D, Albahri A, Zaidan B, Shaalan K, Al-Obaidi J, Albahri O, Alamoodi A, Abdul Majid N, Garfan S, Al-Samarraay M, Jasim A, Baqer M. Novel Federated Decision Making for Distribution of Anti-SARS-CoV-2 Monoclonal Antibody to Eligible High-Risk Patients. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING 2024; 23:197-268. [DOI: 10.1142/s021962202250050x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Context: When the epidemic first broke out, no specific treatment was available for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The urgent need to end this unusual situation has resulted in many attempts to deal with SARS-CoV-2. In addition to several types of vaccinations that have been created, anti-SARS-CoV-2 monoclonal antibodies (mAbs) have added a new dimension to preventative and treatment efforts. This therapy also helps prevent severe symptoms for those at a high risk. Therefore, this is one of the most promising treatments for mild to moderate SARS-CoV-2 cases. However, the availability of anti-SARS-CoV-2 mAb therapy is limited and leads to two main challenges. The first is the privacy challenge of selecting eligible patients from the distribution hospital networking, which requires data sharing, and the second is the prioritization of all eligible patients amongst the distribution hospitals according to dose availability. To our knowledge, no research combined the federated fundamental approach with multicriteria decision-making methods for the treatment of SARS-COV-2, indicating a research gap. Objective: This paper presents a unique sequence processing methodology that distributes anti-SARS-CoV-2 mAbs to eligible high-risk patients with SARS-CoV-2 based on medical requirements by using a novel federated decision-making distributor. Method: This paper proposes a novel federated decision-making distributor (FDMD) of anti-SARS-CoV-2 mAbs for eligible high-risk patients. FDMD is implemented on augmented data of 49,152 cases of patients with SARS-CoV-2 with mild and moderate symptoms. For proof of concept, three hospitals with 16 patients each are enrolled. The proposed FDMD is constructed from the two sides of claim sequencing: central federated server (CFS) and local machine (LM). The CFS includes five sequential phases synchronised with the LMs, namely, the preliminary criteria setting phase that determines the high-risk criteria, calculates their weights using the newly formulated interval-valued spherical fuzzy and hesitant 2-tuple fuzzy-weighted zero-inconsistency (IVSH2-FWZIC), and allocates their values. The subsequent phases are federation, dose availability confirmation, global prioritization of eligible patients and alerting the hospitals with the patients most eligible for receiving the anti-SARS-CoV-2 mAbs according to dose availability. The LM independently performs all local prioritization processes without sharing patients’ data using the provided criteria settings and federated parameters from the CFS via the proposed Federated TOPSIS (F-TOPSIS). The sequential processing steps are coherently performed at both sides. Results and Discussion: (1) The proposed FDMD efficiently and independently identifies the high-risk patients most eligible for receiving anti-SARS-CoV-2 mAbs at each local distribution hospital. The final decision at the CFS relies on the indexed patients’ score and dose availability without sharing the patients’ data. (2) The IVSH2-FWZIC effectively weighs the high-risk criteria of patients with SARS-CoV-2. (3) The local and global prioritization ranks of the F-TOPSIS for eligible patients are subjected to a systematic ranking validated by high correlation results across nine scenarios by altering the weights of the criteria. (4) A comparative analysis of the experimental results with a prior study confirms the effectiveness of the proposed FDMD. Conclusion: The proposed FDMD has the benefits of centrally distributing anti-SARS-CoV-2 mAbs to high-risk patients prioritized based on their eligibility and dose availability, and simultaneously protecting their privacy and offering an effective cure to prevent progression to severe SARS-CoV-2 hospitalization or death.
Collapse
Affiliation(s)
- Abeer AlSereidi
- Faculty of Engineering & IT, The British university in Dubia, United Arab Emirates
| | | | - R. T. Mohammed
- Department of Computing Science, College of Science, Komar University of Science and Technology (KUST), Sulaymaniyah, Iraq
| | - A. A. Zaidan
- Faculty of Engineering & IT, The British university in Dubia, United Arab Emirates
| | - Hassan Albayati
- Department of Business Administration, College of Administrative Science, The University of Mashreq, 10021 Baghdad, Iraq
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - Dragan Pamucar
- University of Defence in Belgrade, Department of Logistic, Pavla Jurisica Sturma 33, 11000 Belgrade, Serbia
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
- University of Information Technology and Communications (UOITC), Baghdad, Iraq
| | - B. B. Zaidan
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Khaled Shaalan
- Faculty of Engineering & IT, The British university in Dubia, United Arab Emirates
| | - Jameel Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
| | - O. S. Albahri
- Computer Techniques Engineering Department Mazaya University College, Thi-Qar, Nassiriya, Iraq
| | - Abdulah Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Salem Garfan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - M. S. Al-Samarraay
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | | | | |
Collapse
|
2
|
Liu X, Zhang T, Zhang J. Toward visual quality enhancement of dehazing effect with improved Cycle-GAN. Neural Comput Appl 2023. [DOI: 10.1007/s00521-022-07964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Majewski P, Hunek WP, Pawuś D, Szurpicki K, Wojtala T. A Sensor-Aided System for Physical Perfect Control Applications in the Continuous-Time Domain. SENSORS (BASEL, SWITZERLAND) 2023; 23:1947. [PMID: 36850545 PMCID: PMC9963907 DOI: 10.3390/s23041947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The recently introduced continuous-time perfect control algorithm has revealed a great potential in terms of the maximum-speed and maximum-accuracy behaviors. However, the discussed inverse model-originated control strategy is associated with considerable energy consumption, which has exceeded a technological limitation in a number of industrial cases. In order to prevent such an important drawback, several solutions could be considered. Therefore, an innovative perfect control scheme devoted to the multivariable real-life objects is investigated in this paper. Henceforth, the new IMC-related approach, strongly supported by the vital sensor-aided system, can successfully be employed in every real-time engineering task, where the precision of conducted processes plays an important role. Theoretical and practical examples strictly confirm the big implementation potential of the new established method over existing ones. It has been seen that the new perfect control algorithm outperforms the classical control law in the form of LQR (considered in two separate ways), which is clearly manifested by almost all simulation examples. For instance, in the case of the multi-tank system, the performance indices ISE, RT, and MOE for LQR without an integration action have been equal to 2.431, 2.4×102, and 3.655×10-6, respectively, whilst the respective values 1.638, 1.58×102, and 1.514×10-7 have been received for the proposed approach.
Collapse
|
4
|
From depth-aware haze generation to real-world haze removal. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Albahri AS, Zaidan AA, AlSattar HA, A. Hamid R, Albahri OS, Qahtan S, Alamoodi AH. Towards physician's experience: Development of machine learning model for the diagnosis of autism spectrum disorders based on complex
T
‐spherical fuzzy‐weighted zero‐inconsistency method. Comput Intell 2022. [DOI: 10.1111/coin.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ahmed S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS) Iraqi Commission for Computers and Informatics (ICCI) Baghdad Iraq
| | - Aws A. Zaidan
- Faculty of Engineering and IT The British University in Dubai Dubai United Arab Emirates
| | - Hassan A. AlSattar
- Department of Business Administration, College of Administrative Sciences The University of Mashreq Baghdad Iraq
| | - Rula A. Hamid
- Informatics Institute for Postgraduate Studies (IIPS) Iraqi Commission for Computers and Informatics (ICCI) Baghdad Iraq
| | - Osamah S. Albahri
- Computer Techniques Engineering Department Mazaya University College Nasiriyah Iraq
| | - Sarah Qahtan
- Department of Computer Center, College of Health and Medical Techniques Middle Technical University Baghdad Iraq
| | - Abdulla H. Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry Universiti Pendidikan Sultan Idris Tanjung Malim Malaysia
| |
Collapse
|
6
|
Alamoodi A, Albahri O, Zaidan A, Alsattar H, Zaidan B, Albahri A. Hospital selection framework for remote MCD patients based on fuzzy q-rung orthopair environment. Neural Comput Appl 2022; 35:6185-6196. [PMID: 36415285 PMCID: PMC9672551 DOI: 10.1007/s00521-022-07998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
This research proposes a novel mobile health-based hospital selection framework for remote patients with multi-chronic diseases based on wearable body medical sensors that use the Internet of Things. The proposed framework uses two powerful multi-criteria decision-making (MCDM) methods, namely fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score method for criteria weighting and hospital ranking. The development of both methods is based on a Q-rung orthopair fuzzy environment to address the uncertainty issues associated with the case study in this research. The other MCDM issues of multiple criteria, various levels of significance and data variation are also addressed. The proposed framework comprises two main phases, namely identification and development. The first phase discusses the telemedicine architecture selected, patient dataset used and decision matrix integrated. The development phase discusses criteria weighting by q-ROFWZIC and hospital ranking by q-ROFDOSM and their sub-associated processes. Weighting results by q-ROFWZIC indicate that the time of arrival criterion is the most significant across all experimental scenarios with (0.1837, 0.183, 0.230, 0.276, 0.335) for (q = 1, 3, 5, 7, 10), respectively. Ranking results indicate that Hospital (H-4) is the best-ranked hospital in all experimental scenarios. Both methods were evaluated based on systematic ranking and sensitivity analysis, thereby confirming the validity of the proposed framework.
Collapse
Affiliation(s)
- A.H. Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - O.S. Albahri
- Computer Techniques Engineering Department, Mazaya University College, Nassiriya, Thi-Qar Iraq
| | - A.A. Zaidan
- Faculty of Engineering & IT, The British University in Dubai, Dubai, United Arab Emirates
| | - H.A. Alsattar
- Department of Business Administration, College of Administrative Science, The University of Mashreq, 10021 Baghdad, Iraq
| | - B.B. Zaidan
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002 Taiwan
| | - A.S. Albahri
- Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| |
Collapse
|
7
|
Nikniaz Z, Namvar ZA, Shirmohammadi M, Maserat E. Smartphone Application for Celiac Patients: Assessing Its Effect on Gastrointestinal Symptoms in a Randomized Controlled Clinical Trial. Int J Telemed Appl 2022; 2022:8027532. [PMID: 35846977 PMCID: PMC9286948 DOI: 10.1155/2022/8027532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Considering the lack of inclusive Persian application for celiac patients that covers all aspects of the GFD, we developed a Persian-language application for patients with CD and assessed the effectiveness of a three-month educational intervention delivered via smartphone application compared with standard care on gastrointestinal symptom rating scale (GSRS) score in patients with celiac disease. Methods In the present parallel randomized controlled clinical trial, 60 patients with CD were assigned randomly to receive education through a smartphone application (n = 30) or conventional clinical education (n = 30). The patients were asked to use it for getting the required information for three months. We assessed the gastrointestinal symptoms using the gastrointestinal symptom rating scale (GSRS) questionnaire at baseline and three months after interventions. The GSRS total score, celiac disease GSRS (CD-GSRS) score, abdominal pain, reflux, diarrhea, constipation, and indigestion scores were calculated. Results Out of 60 randomized patients, 58 patients completed the study. In comparison to baseline, the mean score of CD-GSRS score (p = 0.001), and indigestion subscore (p < 0.001) were significantly decreased in the intervention group. The results of the between-group comparisons showed that there was a significant difference between the two groups only in the mean score of indigestion (p = 0.002). Conclusion According to the results, using a smartphone application for providing information to patients with celiac disease had a significant positive effect on indigestion symptoms compared with routine clinic education. Trial Registration. This trial is registered with the Iranian registry of clinical trials (IRCT code: IRCT20170117032004N2; trial registry date: 2019.6.26).
Collapse
Affiliation(s)
- Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Akbari Namvar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masood Shirmohammadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Maserat
- Department of Health Information Technology, School of Health Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
DCNet: dual-cascade network for single image dehazing. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Albahri AS, Albahri OS, Zaidan AA, Alnoor A, Alsattar HA, Mohammed R, Alamoodi AH, Zaidan BB, Aickelin U, Alazab M, Garfan S, Ahmaro IYY, Ahmed MA. Integration of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score methods under a q-rung orthopair environment: A distribution case study of COVID-19 vaccine doses. COMPUTER STANDARDS & INTERFACES 2022; 80:103572. [PMID: 34456503 PMCID: PMC8386109 DOI: 10.1016/j.csi.2021.103572] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 05/26/2023]
Abstract
Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase 'development' presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of 'recipients list' and 'COVID-19 distribution criteria' was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.
Collapse
Affiliation(s)
- A S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - H A Alsattar
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Rawia Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria 3010 Australia
| | - Mamoun Alazab
- College of Engineering, IT and Environment, Charles Darwin University, NT, Australia
| | - Salem Garfan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Ibraheem Y Y Ahmaro
- Computer Science Department, College of Information Technology, Hebron University, Hebron, Palestine
| | - M A Ahmed
- Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit, Iraq
| |
Collapse
|
10
|
Al-Samarraay MS, Zaidan A, Albahri O, Pamucar D, AlSattar H, Alamoodi A, Zaidan B, Albahri A. Extension of interval-valued Pythagorean FDOSM for evaluating and benchmarking real-time SLRSs based on multidimensional criteria of hand gesture recognition and sensor glove perspectives. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2021.108284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Alsalem MA, Alamoodi AH, Albahri OS, Dawood KA, Mohammed RT, Alnoor A, Zaidan AA, Albahri AS, Zaidan BB, Jumaah FM, Al-Obaidi JR. Multi-criteria decision-making for coronavirus disease 2019 applications: a theoretical analysis review. Artif Intell Rev 2022; 55:4979-5062. [PMID: 35103030 PMCID: PMC8791811 DOI: 10.1007/s10462-021-10124-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The influence of the ongoing COVID-19 pandemic that is being felt in all spheres of our lives and has a remarkable effect on global health care delivery occurs amongst the ongoing global health crisis of patients and the required services. From the time of the first detection of infection amongst the public, researchers investigated various applications in the fight against the COVID-19 outbreak and outlined the crucial roles of different research areas in this unprecedented battle. In the context of existing studies in the literature surrounding COVID-19, related to medical treatment decisions, the dimensions of context addressed in previous multidisciplinary studies reveal the lack of appropriate decision mechanisms during the COVID-19 outbreak. Multiple criteria decision making (MCDM) has been applied widely in our daily lives in various ways with numerous successful stories to help analyse complex decisions and provide an accurate decision process. The rise of MCDM in combating COVID-19 from a theoretical perspective view needs further investigation to meet the important characteristic points that match integrating MCDM and COVID-19. To this end, a comprehensive review and an analysis of these multidisciplinary fields, carried out by different MCDM theories concerning COVID19 in complex case studies, are provided. Research directions on exploring the potentials of MCDM and enhancing its capabilities and power through two directions (i.e. development and evaluation) in COVID-19 are thoroughly discussed. In addition, Bibliometrics has been analysed, visualization and interpretation based on the evaluation and development category using R-tool involves; annual scientific production, country scientific production, Wordcloud, factor analysis in bibliographic, and country collaboration map. Furthermore, 8 characteristic points that go through the analysis based on new tables of information are highlighted and discussed to cover several important facts and percentages associated with standardising the evaluation criteria, MCDM theory in ranking alternatives and weighting criteria, operators used with the MCDM methods, normalisation types for the data used, MCDM theory contexts, selected experts ways, validation scheme for effective MCDM theory and the challenges of MCDM theory used in COVID-19 studies. Accordingly, a recommended MCDM theory solution is presented through three distinct phases as a future direction in COVID19 studies. Key phases of this methodology include the Fuzzy Delphi method for unifying criteria and establishing importance level, Fuzzy weighted Zero Inconsistency for weighting to mitigate the shortcomings of the previous weighting techniques and the MCDM approach by the name Fuzzy Decision by Opinion Score method for prioritising alternatives and providing a unique ranking solution. This study will provide MCDM researchers and the wider community an overview of the current status of MCDM evaluation and development methods and motivate researchers in harnessing MCDM potentials in tackling an accurate decision for different fields against COVID-19.
Collapse
Affiliation(s)
- M. A. Alsalem
- Department of Computing, Faculty of Arts, Computing and Creative Industry (FSKIK), Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - A. H. Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry (FSKIK), Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - O. S. Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry (FSKIK), Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - K. A. Dawood
- Department of Computing Science, Komar University of Science and Technology (KUST), Sulaymaniyah, Iraq
| | - R. T. Mohammed
- Department of Computing Science, Komar University of Science and Technology (KUST), Sulaymaniyah, Iraq
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - A. A. Zaidan
- Faculty of Engineering & IT, British, University in Dubia, Dubai, United Arab Emirates
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - B. B. Zaidan
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, 64002 Douliou, Yunlin Taiwan
| | - F. M. Jumaah
- Department of Advanced Applications and Embedded Systems, Intel Corporation, Plot 6, Bayan Lepas Technoplex, 11900 Pulau Pinang, Malaysia
- Computer Engineering and Software Engineering Department, Polytechnique Montréal, Montréal, Canada
| | - Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Perak, Tanjong Malim Malaysia
| |
Collapse
|
12
|
A new extension of FDOSM based on Pythagorean fuzzy environment for evaluating and benchmarking sign language recognition systems. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06683-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Alsalem MA, Albahri OS, Zaidan AA, Al-Obaidi JR, Alnoor A, Alamoodi AH, Albahri AS, Zaidan BB, Jumaah FM. Rescuing emergency cases of COVID-19 patients: An intelligent real-time MSC transfusion framework based on multicriteria decision-making methods. APPL INTELL 2022; 52:9676-9700. [PMID: 35035091 PMCID: PMC8741536 DOI: 10.1007/s10489-021-02813-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) have shown promising ability to treat critical cases of coronavirus disease 2019 (COVID-19) by regenerating lung cells and reducing immune system overreaction. However, two main challenges need to be addressed first before MSCs can be efficiently transfused to the most critical cases of COVID-19. First is the selection of suitable MSC sources that can meet the standards of stem cell criteria. Second is differentiating COVID-19 patients into different emergency levels automatically and prioritising them in each emergency level. This study presents an efficient real-time MSC transfusion framework based on multicriteria decision-making(MCDM) methods. In the methodology, the testing phase represents the ability to adhere to plastic surfaces, the upregulation and downregulation of specific surface protein markers and finally the ability to differentiate into different kinds of cells. In the development phase, firstly, two scenarios of an augmented dataset based on the medical perspective are generated to produce 80 patients with different emergency levels. Secondly, an automated triage algorithm based on a formal medical guideline is proposed for real-time monitoring of COVID-19 patients with different emergency levels (i.e. mild, moderate, severe and critical) considering the improvement and deterioration procedures from one level to another. Thirdly, a unique decision matrix for each triage level (except mild) is constructed on the basis of the intersection between the evaluation criteria of each emergency level and list of COVID-19 patients. Thereafter, MCDM methods (i.e. analytic hierarchy process [AHP] and vlsekriterijumska optimizcija i kaompromisno resenje [VIKOR]) are integrated to assign subjective weights for the evaluation criteria within each triage level and then prioritise the COVID-19 patients on the basis of individual and group decision-making(GDM) contexts. Results show that: (1) in both scenarios, the proposed algorithm effectively classified the patients into four emergency levels, including mild, moderate, severe and critical, taking into consideration the improvement and deterioration cases. (2) On the basis of experts' perspectives, clear differences in most individual prioritisations for patients with different emergency levels in both scenarios were found. (3) In both scenarios, COVID-19 patients were prioritised identically between the internal and external group VIKOR. During the evaluation, the statistical objective method indicated that the patient prioritisations underwent systematic ranking. Moreover, comparison analysis with previous work proved the efficiency of the proposed framework. Thus, the real-time MSC transfusion for COVID-19 patients can follow the order achieved in the group VIKOR results.
Collapse
Affiliation(s)
- M. A. Alsalem
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - O. S. Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - A. A. Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak Malaysia
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang Malaysia
| | - A. H. Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - B. B. Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - F. M. Jumaah
- Department of Advanced Applications and Embedded Systems, Intel Corporation, Plot 6, 11900 Bayan Lepas Technoplex, Pulau Pinang Malaysia
| |
Collapse
|
14
|
Alsalem MA, Alsattar HA, Albahri AS, Mohammed RT, Albahri OS, Zaidan AA, Alnoor A, Alamoodi AH, Qahtan S, Zaidan BB, Aickelin U, Alazab M, Jumaah FM. Based on T-spherical fuzzy environment: A combination of FWZIC and FDOSM for prioritising COVID-19 vaccine dose recipients. J Infect Public Health 2021; 14:1513-1559. [PMID: 34538731 PMCID: PMC8388152 DOI: 10.1016/j.jiph.2021.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/14/2021] [Accepted: 08/21/2021] [Indexed: 01/07/2023] Open
Abstract
The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.
Collapse
Affiliation(s)
- M A Alsalem
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - H A Alsattar
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A S Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - R T Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; Faculty of Computing and Innovative Technology, Geomatika University College, Kuala Lumpur, Malaysia
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia.
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Sarah Qahtan
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria 3010, Australia
| | - Mamoun Alazab
- College of Engineering, IT and Environment, Charles Darwin University, NT, Australia
| | - F M Jumaah
- Department of Advanced Applications and Embedded Systems, Intel Corporation, Plot 6 Bayan Lepas Technoplex, 11900 Pulau Pinang, Malaysia
| |
Collapse
|
15
|
Novel dynamic fuzzy Decision-Making framework for COVID-19 vaccine dose recipients. J Adv Res 2021; 37:147-168. [PMID: 35475277 PMCID: PMC8378994 DOI: 10.1016/j.jare.2021.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction The vaccine distribution for the COVID-19 is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion. In view of solving this theoretical issue, the fuzzy-weighted zero-inconsistency (FWZIC) can be used as a powerful weighting MCDM method to provide explicit weights for a criteria set with zero inconstancy. However, FWZIC is based on the triangular fuzzy number that is limited in solving the vagueness related to the aforementioned theoretical issues. Objectives This research presents a novel homogeneous Pythagorean fuzzy framework for distributing the COVID-19 vaccine dose by integrating a new formulation of the PFWZIC and PFDOSM methods. Methods The methodology is divided into two phases. Firstly, an augmented dataset was generated that included 300 recipients based on five COVID-19 vaccine distribution criteria (i.e., vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). Then, a decision matrix was constructed on the basis of an intersection of the 'recipients list' and 'COVID-19 distribution criteria'. Then, the MCDM methods were integrated. An extended PFWZIC was developed, followed by the development of PFDOSM. Results (1) PFWZIC effectively weighted the vaccine distribution criteria. (2) The PFDOSM-based group prioritisation was considered in the final distribution result. (3) The prioritisation ranks of the vaccine recipients were subject to a systematic ranking that is supported by high correlation results over nine scenarios of the changing criteria weights values. Conclusion The findings of this study are expected to ensuring equitable protection against COVID-19 and thus help accelerate vaccine progress worldwide.
Collapse
|
16
|
Albahri AS, Zaidan AA, Albahri OS, Zaidan BB, Alamoodi AH, Shareef AH, Alwan JK, Hamid RA, Aljbory MT, Jasim AN, Baqer MJ, Mohammed KI. Development of IoT-based mhealth framework for various cases of heart disease patients. HEALTH AND TECHNOLOGY 2021. [DOI: 10.1007/s12553-021-00579-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Krishnan E, Mohammed R, Alnoor A, Albahri OS, Zaidan AA, Alsattar H, Albahri AS, Zaidan BB, Kou G, Hamid RA, Alamoodi AH, Alazab M. Interval type 2 trapezoidal‐fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e‐tourism applications. INT J INTELL SYST 2021. [DOI: 10.1002/int.22489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elaiyaraja Krishnan
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Rawia Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Alhamzah Alnoor
- School of Management Universiti Sains Malaysia Pulau Pinang Malaysia
| | - Osamah Shihab Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Aws Alaa Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Hassan Alsattar
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Ahmed Shihab Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
- Informatics Institute for Postgraduate Studies (IIPS) Iraqi Commission for Computers and Informatics (ICCI) Baghdad Iraq
| | - Bilal Bahaa Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
- Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan, ROC
| | - Gang Kou
- School of Business Administration Southwestern University of Finance and Economics Chengdu China
| | - Rula A. Hamid
- College of Business Informatics University of Information Technology and Communications (UOITC) Baghdad Iraq
| | - Abdullah Hussein Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Mamoun Alazab
- College of Engineering, IT and Environment Charles Darwin University NT Australia
| |
Collapse
|
18
|
|
19
|
Mohsin AH, Zaidan AA, Zaidan BB, Mohammed KI, Albahri OS, Albahri AS, Alsalem MA. PSO-Blockchain-based image steganography: towards a new method to secure updating and sharing COVID-19 data in decentralised hospitals intelligence architecture. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 80:14137-14161. [PMID: 33519293 PMCID: PMC7821848 DOI: 10.1007/s11042-020-10284-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 05/02/2023]
Abstract
Secure updating and sharing for large amounts of healthcare information (such as medical data on coronavirus disease 2019 [COVID-19]) in efficient and secure transmission are important but challenging in communication channels amongst hospitals. In particular, in addressing the above challenges, two issues are faced, namely, those related to confidentiality and integrity of their health data and to network failure that may cause concerns about data availability. To the authors' knowledge, no study provides secure updating and sharing solution for large amounts of healthcare information in communication channels amongst hospitals. Therefore, this study proposes and discusses a novel steganography-based blockchain method in the spatial domain as a solution. The novelty of the proposed method is the removal and addition of new particles in the particle swarm optimisation (PSO) algorithm. In addition, hash function can hide secret medical COVID-19 data in hospital databases whilst providing confidentiality with high embedding capacity and high image quality. Moreover, stego images with hash data and blockchain technology are used in updating and sharing medical COVID-19 data between hospitals in the network to improve the level of confidentiality and protect the integrity of medical COVID-19 data in grey-scale images, achieve data availability if any connection failure occurs in a single point of the network and eliminate the central point (third party) in the network during transmission. The proposed method is discussed in three stages. Firstly, the pre-hiding stage estimates the embedding capacity of each host image. Secondly, the secret COVID-19 data hiding stage uses PSO algorithm and hash function. Thirdly, the transmission stage transfers the stego images based on blockchain technology and updates all nodes (hospitals) in the network. As proof of concept for the case study, the authors adopted the latest COVID-19 research published in the Computer Methods and Programs in Biomedicine journal, which presents a rescue framework within hospitals for the storage and transfusion of the best convalescent plasma to the most critical patients with COVID-19 on the basis of biological requirements. The validation and evaluation of the proposed method are discussed.
Collapse
Affiliation(s)
- A. H. Mohsin
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
- Republic of Iraq-Presidency of Ministries - Establishment of Martyrs, Baghdad, Iraq
| | - A. A. Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - B. B. Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - K. I. Mohammed
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - O. S. Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - A. S. Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - M. A. Alsalem
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| |
Collapse
|
20
|
Mohammed TJ, Albahri AS, Zaidan AA, Albahri OS, Al-Obaidi JR, Zaidan BB, Larbani M, Mohammed RT, Hadi SM. Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. APPL INTELL 2021; 51:2956-2987. [PMID: 34764579 PMCID: PMC7820530 DOI: 10.1007/s10489-020-02169-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/31/2023]
Abstract
As coronavirus disease 2019 (COVID-19) spreads across the world, the transfusion of efficient convalescent plasma (CP) to the most critical patients can be the primary approach to preventing the virus spread and treating the disease, and this strategy is considered as an intelligent computing concern. In providing an automated intelligent computing solution to select the appropriate CP for the most critical patients with COVID-19, two challenges aspects are bound to be faced: (1) distributed hospital management aspects (including scalability and management issues for prioritising COVID-19 patients and donors simultaneously), and (2) technical aspects (including the lack of COVID-19 dataset availability of patients and donors and an accurate matching process amongst them considering all blood types). Based on previous reports, no study has provided a solution for CP-transfusion-rescue intelligent framework during this pandemic that has addressed said challenges and issues. This study aimed to propose a novel CP-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on the matching component process to provide an efficient CP from eligible donors to the most critical patients using multicriteria decision-making (MCDM) methods. A dataset, including COVID-19 patients/donors that have met the important criteria in the virology field, must be augmented to improve the developed framework. Four consecutive phases conclude the methodology. In the first phase, a new COVID-19 dataset is generated on the basis of medical-reference ranges by specialised experts in the virology field. The simulation data are classified into 80 patients and 80 donors on the basis of the five biomarker criteria with four blood types (i.e., A, B, AB, and O) and produced for COVID-19 case study. In the second phase, the identification scenario of patient/donor distributions across four centralised/decentralised telemedicine hospitals is identified 'as a proof of concept'. In the third phase, three stages are conducted to develop a CP-transfusion-rescue framework. In the first stage, two decision matrices are adopted and developed on the basis of the five 'serological/protein biomarker' criteria for the prioritisation of patient/donor lists. In the second stage, MCDM techniques are analysed to adopt individual and group decision making based on integrated AHP-TOPSIS as suitable methods. In the third stage, the intelligent matching components amongst patients/donors are developed on the basis of four distinct rules. In the final phase, the guideline of the objective validation steps is reported. The intelligent framework implies the benefits and strength weights of biomarker criteria to the priority configuration results and can obtain efficient CPs for the most critical patients. The execution of matching components possesses the scalability and balancing presentation within centralised/decentralised hospitals. The objective validation results indicate that the ranking is valid.
Collapse
Affiliation(s)
- Thura J. Mohammed
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia ,Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - A. A. Zaidan
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - O. S. Albahri
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - Jameel R. Al-Obaidi
- grid.444506.70000 0000 9272 6490Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak Malaysia
| | - B. B. Zaidan
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - Moussa Larbani
- grid.34428.390000 0004 1936 893XSchool of Mathematics and Statistics, Carleton University, Ottawa, ON Canada
| | - R. T. Mohammed
- grid.11142.370000 0001 2231 800XFaculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Suha M. Hadi
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| |
Collapse
|
21
|
Chen TY. The likelihood-based optimization ordering model for multiple criteria group decision making with Pythagorean fuzzy uncertainty. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05278-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|