1
|
Wermke M, Holderried TAW, Luke JJ, Morris VK, Alsdorf WH, Wetzko K, Andersson BS, Wistuba II, Parra ER, Hossain MB, Grund-Gröschke S, Aslan K, Satelli A, Marisetty A, Satam S, Kalra M, Hukelmann J, Kursunel MA, Pozo K, Acs A, Backert L, Baumeister M, Bunk S, Wagner C, Schoor O, Mohamed AS, Mayer-Mokler A, Hilf N, Krishna D, Walter S, Tsimberidou AM, Britten CM. First-in-human dose escalation trial to evaluate the clinical safety and efficacy of an anti-MAGEA1 autologous TCR-transgenic T cell therapy in relapsed and refractory solid tumors. J Immunother Cancer 2024; 12:e008668. [PMID: 39038917 PMCID: PMC11268062 DOI: 10.1136/jitc-2023-008668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
RATIONALE OF THE TRIAL Although the use of engineered T cells in cancer immunotherapy has greatly advanced the treatment of hematological malignancies, reaching meaningful clinical responses in the treatment of solid tumors is still challenging. We investigated the safety and tolerability of IMA202 in a first-in-human, dose escalation basket trial in human leucocyte antigen A*02:01 positive patients with melanoma-associated antigen A1 (MAGEA1)-positive advanced solid tumors. TRIAL DESIGN The 2+2 trial design was an algorithmic design based on a maximally acceptable dose-limiting toxicity (DLT) rate of 25% and the sample size was driven by the algorithmic design with a maximum of 16 patients. IMA202 consists of autologous genetically modified cytotoxic CD8+ T cells expressing a T cell receptor (TCR), which is specific for a nine amino acid peptide derived from MAGEA1. Eligible patients underwent leukapheresis, T cells were isolated, transduced with lentiviral vector carrying MAGEA1-specific TCR and following lymphodepletion (fludarabine/cyclophosphamide), infused with a median of 1.4×109 specific T cells (range, 0.086×109-2.57×109) followed by interleukin 2. SAFETY OF IMA202: No DLT was observed. The most common grade 3-4 adverse events were cytopenias, that is, neutropenia (81.3%), lymphopenia (75.0%), anemia (50.0%), thrombocytopenia (50.0%) and leukopenia (25.0%). 13 patients experienced cytokine release syndrome, including one grade 3 event. Immune effector cell-associated neurotoxicity syndrome was observed in two patients and was grade 1 in both. EFFICACY OF IMA202: Of the 16 patients dosed, 11 (68.8%) patients had stable disease (SD) as their best overall response (Response Evaluation Criteria in Solid Tumors V.1.1). Five patients had initial tumor shrinkage in target lesions and one patient with SD experienced continued shrinkage in target lesions for 3 months in total but had to be classified as progressive disease due to progressive non-target lesions. IMA202 T cells were persistent in peripheral blood for several weeks to months and were also detectable in tumor tissue. Peak persistence was higher in patients who received higher doses. CONCLUSION In conclusion, IMA202 had a manageable safety profile, and it was associated with biological and potential clinical activity of MAGEA1-targeting genetically engineered TCR-T cells in a poor prognosis, multi-indication solid tumor cohort. TRIAL REGISTRATION NUMBERS NCT04639245, NCT05430555.
Collapse
Affiliation(s)
- Martin Wermke
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Tobias A W Holderried
- Department of Hematology, Oncology, Immunooncology, Stem Cell Transplantation, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jason John Luke
- Cancer Immunotherapeutics Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Winfried H Alsdorf
- Department of Oncology, Hematology, and Bone Marrow Transplantation with Section Pneumology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Wetzko
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Borje S Andersson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Katrin Aslan
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | - Swapna Satam
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | - Andreas Acs
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | | | | | | | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
2
|
Stoyanov GS, Dzhenkov DL. On the Concepts and History of Glioblastoma Multiforme - Morphology, Genetics and Epigenetics. Folia Med (Plovdiv) 2019; 60:48-66. [PMID: 29668458 DOI: 10.1515/folmed-2017-0069] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV WHO malignant tumor with astrocytic differentiation. As one of the most common clinically diagnosed central nervous system (CNS) oncological entries, there have been a wide variety of historical reports of the description and evolution of ideas regarding these tumors. The first recorded reports of gliomas were given in British scientific reports, by Berns in 1800 and in 1804 by Abernety, with the first comprehensive histomorphological description being given in 1865 by Rudolf Virchow. In 1926 Percival Bailey and Harvey Cushing gave the base for the modern classification of gliomas. Between 1934 and 1941 the most prolific researcher in glioma research was Hans-Joachim Scherer, who postulated some of the clinico-morphological aspects of GBM. With the introduction of molecular and genetic tests the true multifomity of GBM has been established, with different genotypes bearing the same histomorphological and IHC picture, as well as some of the aspects of gliomagenesis. For a GBM to develop, a specific trigger mutation needs to occur in a GBM stem cell - primary GBM, or a slow aggregation of individual mutations, without a distinct trigger mutation - secondary GBM. Knowledge of GBM has been closely related to general medical knowledge of the CNS since these malignancies were first described more than 200 years ago. Several great leaps have been made in that time, in the footsteps of both CNS and advancements in general medical knowledge.
Collapse
Affiliation(s)
- George St Stoyanov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Prof Dr. Paraskev Stoyanov Medical University, Varna, Bulgaria
| | - Deyan L Dzhenkov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Prof Dr. Paraskev Stoyanov Medical University, Varna, Bulgaria
| |
Collapse
|
4
|
Tang SH, Yang DH, Huang W, Zhou HK, Lu XH, Ye G. Hypomethylated P4 promoter induces expression of the insulin-like growth factor-II gene in hepatocellular carcinoma in a Chinese population. Clin Cancer Res 2007; 12:4171-7. [PMID: 16857788 DOI: 10.1158/1078-0432.ccr-05-2261] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The expression of human insulin-like growth factor-II (IGF-II) is regulated by the activation of four promoters (P1-P4) acting in a development-dependent, tissue-specific manner. IGF-II overexpression associated with P3 and P4 activation is observed in animal and human hepatocarcinogenesis. We correlated P4 epigenetic alteration with P4 transcript activation and clinicopathologic features. EXPERIMENTAL DESIGN We analyzed P4 epigenetic alteration using methylation-specific PCR in 34 hepatocellular carcinoma (HCC) specimens, 34 matched adjacent nontumor specimens, and 8 normal adult liver specimens. The data were correlated with activation of P4 transcription by using reverse transcription-PCR. Epigenetic alteration was compared with patients' clinicopathologic features. RESULTS Compared with normal liver tissue, hypomethylation of P4 CpG islands was significantly more frequent in HCC (P = 0.03) and matched tissues (P = 0.047). P4 mRNA levels in HCC with unmethylated alleles were significantly higher than in HCC without unmethylated alleles (P = 0.001); P4 mRNA levels in matched nontumor tissues with unmethylated alleles were significantly higher than in matched nontumor tissues without unmethylated alleles (P = 0.005). P4 hypomethylation in HCC was associated with portal vein tumor embolus (P = 0.017) and poorer tumor differentiation (P = 0.025). CONCLUSIONS These findings suggest that IGF-II P4 hypomethylation may be an early and frequent event and that it may contribute to P4 transcription expression activation during the transformation of a premalignant liver lesion to HCC. Furthermore, aberrant hypomethylation of P4 CpG islands not only may play an important role during hepatocarcinogenesis but might also be a useful biomarker for poor prognosis of patients with HCC.
Collapse
Affiliation(s)
- Shao Hui Tang
- Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
5
|
Cheng E, Trombetta SE, Kovacs D, Beech RD, Ariyan S, Reyes-Mugica M, McNiff JM, Narayan D, Kluger HM, Picardo M, Halaban R. Rab33A: Characterization, Expression, and Suppression by Epigenetic Modification. J Invest Dermatol 2006; 126:2257-71. [PMID: 16810302 DOI: 10.1038/sj.jid.5700386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rab33A, a member of the small GTPase superfamily, is an X-linked gene that is expressed in brain, lymphocytes, and normal melanocytes, but is downregulated in melanoma cells. We demonstrate that in normal melanocytes Rab33A colocalizes with melanosomal proteins and that a constitutively active GTPase mutant suppresses their transport to the melanosomes. In the brain, Rab33A is present throughout the cortex, as well as in the hippocampal CA fields. A survey of melanocytic lesions demonstrated that aberrant downregulation of Rab33A is an early event that is already prevalent in melanocytes of giant congenital nevi. Analyses of bisulfite-modified DNA revealed that Rab33A is regulated by DNA methylation of a specific promoter region proximal to the transcription initiation site, and that suppression of Rab33A in melanoma cells recapitulates normal processes that control silencing of X-linked genes, but not tissue specific gene expression. This information is important for understanding carcinogenesis as well as other aberrant processes because Rab33A may have an important role in disorders involving X-chromosome-linked genes associated with vesicular transport.
Collapse
Affiliation(s)
- Elaine Cheng
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06520-8059, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim KH, Choi JS, Kim IJ, Ku JL, Park JG. Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues. World J Gastroenterol 2006; 12:5651-7. [PMID: 17007017 PMCID: PMC4088165 DOI: 10.3748/wjg.v12.i35.5651] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To verify the expression and methylation status of the MAGE-A1 and MAGE-A3 genes in colorectal cancer tissues and cancer cell lines.
METHODS: We evaluated promoter demethylation status of the MAGE-A1 and MAGE-A3 genes by RT-PCR analysis and methylation-specific PCR (MS-PCR), as well as sequencing analysis, after sodium bisulfite modification in 32 colorectal cancer cell lines and 87 cancer tissues.
RESULTS: Of the 32 cell lines, MAGE-A1 and MAGE-A3 expressions were observed in 59% and 66%, respectively. Subsequent to sodium bisulfite modification and MS-PCR analysis, the promoter hypomethylation of MAGE-A1 and MAGE-A3 was confirmed in both at 81% each. Promoter hypomethylation of MAGE-A1 and MAGE-A3 in colorectal cancer tissues was observed in 43% and 77%, respectively. Hypomethylation of MAGE-A1 and MAGE-A3 genes in corresponding normal tissues were observed in 2% and 6%, respectively.
CONCLUSION: The promoter hypomethylation of MAGE genes up-regulates its expression in colorectal carcinomas as well as in gastric cancers and might play a significant role in the development and progression of human colorectal carcinomas.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Cell Line, Tumor
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Decitabine
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Melanoma-Specific Antigens
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744, Korea
| | | | | | | | | |
Collapse
|