1
|
Zhang X, Deng X, Tan J, Liu H, Zhang H, Li C, Li Q, Zhou J, Xiao Z, Li J. Idarubicin-loaded degradable hydrogel for TACE therapy enhances anti-tumor immunity in hepatocellular carcinoma. Mater Today Bio 2024; 29:101343. [PMID: 39687797 PMCID: PMC11647502 DOI: 10.1016/j.mtbio.2024.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly cancer, often diagnosed at advanced stages, limiting surgical options. Transcatheter arterial chemoembolization (TACE) is a primary treatment for inoperable and involves the use of drug-eluting microspheres to slowly release chemotherapy drugs. However, patient responses to TACE vary, with some experiencing tumor progression and recurrence. Traditional TACE uses agents like oil-based drug emulsions and polyvinyl alcohol particles, which can permanently block blood vessels and increase tumor hypoxia. Additionally, TACE can suppress the immune system by reducing immune cell numbers and function, contributing to poor treatment outcomes. New approaches, like TACE using degradable starch microspheres and hydrogel-based materials, offer the potential to create different tumor environments that could improve both safety and efficacy. In our research, we developed a composite hydrogel (IF@Gel) made of Poloxamer-407 gel and Fe3O4 nanoparticles, loaded with idarubicin, to use as an embolic material for TACE in a rat model of orthotopic HCC. We observed promising therapeutic effects and investigated the impact on the tumor immune microenvironment, focusing on the role of immunogenic cell death (ICD). The composite hydrogel demonstrated excellent potential as an embolic material for TACE, and IF@Gel-based TACE demonstrated significant efficacy in rat HCC. Furthermore, our findings highlight the potential synergistic effects of ICD with anti-PD-L1 therapy, providing new insights into HCC treatment strategies. This study aims to provide improved treatment options for HCC and to deepen our understanding of the mechanisms of TACE and tumor environment regulation.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiujiao Deng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Jizhou Tan
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haikuan Liu
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong Zhang
- Department of Interventional Radiology and Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan 523067, China
| | - Chengzhi Li
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Qingjun Li
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Jinxue Zhou
- Department of Hepatobiliopancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Wang D, Zhang Z, Zhao L, Yang L, Lou C. Recent advances in natural polysaccharides against hepatocellular carcinoma: A review. Int J Biol Macromol 2023; 253:126766. [PMID: 37689300 DOI: 10.1016/j.ijbiomac.2023.126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor of the digestive system that poses a serious threat to human life and health. Chemotherapeutic drugs commonly used in the clinic have limited efficacy and heavy adverse effects. Therefore, it is imperative to find effective and safe alternatives, and natural polysaccharides (NPs) fit the bill. This paper summarizes in detail the anti-HCC activity of NPs in vitro, animal and clinical trials. Furthermore, the addition of NPs can reduce the deleterious effects of chemotherapeutic drugs such as immunotoxicity, bone marrow suppression, oxidative stress, etc. The potential mechanisms are related to induction of apoptosis and cell cycle arrest, block of angiogenesis, invasion and metastasis, stimulation of immune activity and targeting of MircoRNA. And on this basis, we further elucidate that the anti-HCC activity may be related to the monosaccharide composition, molecular weight (Mw), conformational features and structural modifications of NPs. In addition, due to its good physicochemical properties, it is widely used as a drug carrier in the delivery of chemotherapeutic drugs and small molecule components. This review provides a favorable theoretical basis for the application of the anti-HCC activity of NPs.
Collapse
Affiliation(s)
- Dazhen Wang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Zhengfeng Zhang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Lu Zhao
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Liu Yang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - ChangJie Lou
- Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
3
|
Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen K. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1749. [PMID: 34405552 PMCID: PMC8850537 DOI: 10.1002/wnan.1749] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Transarterial chemoembolization (TACE) is a recommended treatment for patients suffering from intermediate and advanced hepatocellular carcinoma (HCC). As compared to the conventional TACE, drug-eluting bead TACE demonstrates several advantages in terms of survival, treatment response, and adverse effects. The selection of embolic agents is critical to the success of TACE. Many studies have been performed on the modification of the structure, size, homogeneity, biocompatibility, and biodegradability of embolic agents. Continuing efforts are focused on efficient loading of versatile chemotherapeutics, controlled sizes for sufficient occlusion, real-time detection intra- and post-procedure, and multimodality imaging-guided precise treatment. Here, we summarize recent advances and applications of microspheres and nanoparticles in TACE for HCC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Austin Z. Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Streitparth F, Wittgenstein H, Stechele M, Neumann J, Schmidt C, Schnorr J, Hamm B, Günther RW. Biodegradable Polydioxanone Microspheres for Transcatheter Arterial Embolization: Proof of Principle. J Vasc Interv Radiol 2020; 31:2132-2140.e5. [PMID: 33160828 DOI: 10.1016/j.jvir.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To evaluate feasibility, embolization success, biodegradability, reperfusion, and biocompatibility of biodegradable microspheres (MS) made from polydioxanone (PDO) for transcatheter arterial embolization. MATERIALS AND METHODS Unilateral selective renal embolization of a segmental artery was performed in 16 New Zealand White rabbits with PDO-MS (100-150 μm and 90-315 μm). Animals were randomly assigned to different observation periods and underwent control digital subtraction angiography (DSA) and MR imaging immediately (n = 3), 1 week (n = 2), 4 weeks (n = 2), 8 weeks (n = 2), 12 weeks (n = 5), and 16 weeks (n = 2) after embolization. Kidneys were harvested for macroscopic and histologic analysis of embolization success, biodegradability, and biocompatibility. RESULTS Embolization was technically successful in 15 of 16 animals. One animal died of anesthesia-related circulatory failure. The 100-150 μm MS were injected easily through 3-F catheters; the 90-315 μm MS tended to clog with intermittent catheter obstruction. DSA and MR imaging showed successful target embolization in 13 of 15 animals. In 2 animals, the entire kidney was affected owing to catheter clogging, including a reflux of MS while flushing. Control DSA and MR imaging showed increasing vascular reperfusion with time. Macroscopic and histologic analysis revealed necrosis/infarction in areas in which embolization was achieved. MS were extensively degraded after 16 weeks, and overall inflammatory reaction was mild. CONCLUSIONS Biodegradable PDO-MS induced effective embolization of target vessels while demonstrating good biocompatibility. MS increasingly dissolved at 16 weeks, partial reperfusion started at week 1, and complete reperfusion started at week 8, thus offering possible advantages as a temporary embolic agent.
Collapse
Affiliation(s)
| | - Helena Wittgenstein
- Evidensia Veterinary Clinic for Small Animals GmbH Norderstedt, Norderstedt, Germany
| | - Matthias Stechele
- Department of Radiology, Ludwig-Maximilians University, Munich, Germany
| | - Jens Neumann
- Pathological Institute, Ludwig-Maximilians University, Munich, Germany
| | - Christian Schmidt
- Research and Development Laboratory, microParticles GmbH, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité, Humboldt University Medical School, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité, Humboldt University Medical School, Berlin, Germany
| | - Rolf W Günther
- Department of Radiology, Charité, Humboldt University Medical School, Berlin, Germany
| |
Collapse
|
5
|
Chen G, Wei R, Huang X, Wang F, Chen Z. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent. Int J Biol Macromol 2020; 155:1450-1459. [DOI: 10.1016/j.ijbiomac.2019.11.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
|
6
|
Chen YP, Zhang JL, Zou Y, Wu YL. Recent Advances on Polymeric Beads or Hydrogels as Embolization Agents for Improved Transcatheter Arterial Chemoembolization (TACE). Front Chem 2019; 7:408. [PMID: 31231636 PMCID: PMC6560223 DOI: 10.3389/fchem.2019.00408] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Transcatheter arterial chemoembolization (TACE), aiming to block the hepatic artery for inhibiting tumor blood supply, became a popular therapy for hepatocellular carcinoma (HCC) patients. Traditional TACE formulation of anticancer drug emulsion in ethiodized oil (i.e., Lipiodol®) and gelatin sponge (i.e., Gelfoam®) had drawbacks on patient tolerance and resulted in undesired systemic toxicity, which were both significantly improved by polymeric beads, microparticles, or hydrogels by taking advantage of the elegant design of biocompatible or biodegradable polymers, especially amphiphilic polymers or polymers with both hydrophilic and hydrophobic chains, which could self-assemble into proposed microspheres or hydrogels. In this review, we aimed to summarize recent advances on polymeric embolization beads or hydrogels as TACE agents, with emphasis on their material basis of polymer architectures, which are important but have not yet been comprehensively summarized.
Collapse
Affiliation(s)
- Yun-Ping Chen
- Department of Oncology, The 910 Hospital of PLA, Quanzhou, China
| | - Jiang-Ling Zhang
- Department of Oncology, The 910 Hospital of PLA, Quanzhou, China
| | - Yanhong Zou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Calibrated Bioresorbable Microspheres as an Embolic Agent: An Experimental Study in a Rabbit Renal Model. J Vasc Interv Radiol 2015; 26:1887-94.e1. [PMID: 25824317 DOI: 10.1016/j.jvir.2015.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/02/2015] [Accepted: 01/11/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the time frame of resorption and tissue response of newly developed bioresorbable microspheres (BRMS) and vessel recanalization after renal embolization. MATERIALS AND METHODS Embolization of lower poles of kidneys of 20 adult rabbits was performed with BRMS (300-500 µm). Two rabbits were sacrificed immediately after embolization (day 0). Three rabbits were sacrificed after follow-up angiography at 3, 7, 10, 14, 21, and 30 days. The pathologic changes in the renal parenchyma, BRMS degradation, and vessel recanalization were evaluated histologically and angiographically. RESULTS Embolization procedures were successfully performed, and all animals survived without complication. Infarcts were observed in all kidneys that received embolization harvested after day 0. Moderate degradation of BRMS (score = 1.07 ± 0.06) was observed by day 3. Of BRMS, 95% were resorbed before day 10 with scant BRMS materials remaining in the arteries at later time points. Partial vessel recanalization was observed by angiography starting on day 3, whereas new capillary formation was first identified histologically on day 7. Vascular inflammation associated with BRMS consisted of acute, heterophilic infiltrate at earlier time points (day 3 to day 10); this was resolved with the resorption of BRMS. Inflammation and fibrosis within infarcted regions were consistent with progression of infarction. CONCLUSIONS BRMS were bioresorbable in vivo, and most BRMS were resorbed before day 10 with a mild tissue reaction. Vessel recanalization occurred secondary to the resorption of BRMS.
Collapse
|
8
|
Louguet S, Verret V, Bédouet L, Servais E, Pascale F, Wassef M, Labarre D, Laurent A, Moine L. Poly(ethylene glycol) methacrylate hydrolyzable microspheres for transient vascular embolization. Acta Biomater 2014; 10:1194-205. [PMID: 24321348 DOI: 10.1016/j.actbio.2013.11.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/06/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022]
Abstract
Poly(ethylene glycol) methacrylate (PEGMA) hydrolyzable microspheres intended for biomedical applications were readily prepared from poly(lactide-co-glycolide) (PLGA)-poly(ethylene glycol) (PEG)-PLGA crosslinker and PEGMA as a monomer using a suspension polymerization process. Additional co-monomers, methacrylic acid and 2-methylene-1,3-dioxepane (MDO), were incorporated into the initial formulation to improve the properties of the microspheres. All synthesized microspheres were spherical in shape, calibrated in the 300-500 μm range, swelled in phosphate-buffered saline (PBS) and easily injectable through a microcatheter. Hydrolytic degradation experiments performed in PBS at 37 °C showed that all of the formulations tested were totally degraded in less than 2 days. The resulting degradation products were a mixture of low-molecular-weight compounds (PEG, lactic and glycolic acids) and water-soluble polymethacrylate chains having molecular weights below the threshold for renal filtration of 50 kg mol(-1) for the microspheres containing MDO. Both the microspheres and the degradation products were determined to exhibit minimal cytotoxicity against L929 fibroblasts. Additionally, in vivo implantation in a subcutaneous rabbit model supported the in vitro results of a rapid degradation rate of microspheres and provided only a mild and transient inflammatory reaction comparable to that of the control group.
Collapse
Affiliation(s)
- Stéphanie Louguet
- Occlugel S.A.S., 12 Rue Charles de Gaulle, 78350 Jouy en Josas, France
| | - Valentin Verret
- Occlugel S.A.S., 12 Rue Charles de Gaulle, 78350 Jouy en Josas, France; Archimmed S.A.R.L., 12 Rue Charles de Gaulle, 78350 Jouy en Josas, France
| | - Laurent Bédouet
- Occlugel S.A.S., 12 Rue Charles de Gaulle, 78350 Jouy en Josas, France
| | - Emeline Servais
- Occlugel S.A.S., 12 Rue Charles de Gaulle, 78350 Jouy en Josas, France
| | - Florentina Pascale
- Archimmed S.A.R.L., 12 Rue Charles de Gaulle, 78350 Jouy en Josas, France
| | - Michel Wassef
- AP-HP hôpital Lariboisière, Department of Pathology, University of Paris 7 - Denis Diderot, Faculty of Medicine, 2 rue Ambroise Paré, 75010 Paris, France
| | - Denis Labarre
- Université Paris-Sud, Institut Galien Paris-Sud, LabEx LERMIT, Faculté de Pharmacie, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France; CNRS UMR 8612, Institut Galien Paris-Sud, LabEx LERMIT, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France
| | - Alexandre Laurent
- AP-HP hôpital Lariboisière, Department of Pathology, University of Paris 7 - Denis Diderot, Faculty of Medicine, 2 rue Ambroise Paré, 75010 Paris, France; "Laboratoire Matières et Systèmes Complexes", CNRS 7057, University of Paris 7, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Laurence Moine
- Université Paris-Sud, Institut Galien Paris-Sud, LabEx LERMIT, Faculté de Pharmacie, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France; CNRS UMR 8612, Institut Galien Paris-Sud, LabEx LERMIT, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
9
|
Maeda N, Verret V, Moine L, Bédouet L, Louguet S, Servais E, Osuga K, Tomiyama N, Wassef M, Laurent A. Targeting and Recanalization after Embolization with Calibrated Resorbable Microspheres versus Hand-cut Gelatin Sponge Particles in a Porcine Kidney Model. J Vasc Interv Radiol 2013; 24:1391-8. [DOI: 10.1016/j.jvir.2013.05.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 12/16/2022] Open
|