1
|
Srinivasan R, Ramadoss R, Kandasamy V, Ranganadin P, Green SR, Kasirajan A, Pillai AB. Exploring the regulatory role of small RNAs in modulating host-pathogen interactions: implications for bacterial and viral infections. Mol Biol Rep 2025; 52:115. [PMID: 39799541 DOI: 10.1007/s11033-024-10214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections. In the context of viral infections, miRNAs are involved in regulating viral replication, pathogenesis, and immune evasion. Similarly, tiRNAs have recently emerged as novel players in bacterial and viral infections such as modulating bacterial growth, adaptation to stress conditions, host antiviral responses, and impacting viral replication and pathogenesis. This review provides a comprehensive analysis of the potential of miRNA expression profiles as diagnostic biomarkers to differentiate between bacterial and viral infections. Further discusses the key pathways through which small RNAs regulate bacterial and viral infection-related diseases.
Collapse
Affiliation(s)
- Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ramya Ramadoss
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Vanathy Kandasamy
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Pajanivel Ranganadin
- Department of Pulmonary Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Siva Ranganathan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Anand Kasirajan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
- Institute of Advanced Virology, Trivandrum, Kerala, 695 317, India.
| |
Collapse
|
2
|
Orlandi E, Ceccuzzi L, Belpinati F, Rodolfo M, Malerba G, Trabetti E, Gomez-Lira M, Romanelli MG. Sex-dependent interaction of PTGS2 with miR-146a as risk factor for melanoma and the impact of sex hormones in gene expression in skin cells. Melanoma Res 2024; 34:296-306. [PMID: 38934060 DOI: 10.1097/cmr.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Gender disparity in melanoma is a complex issue where sex hormones could be engaged. Differences in genetic variations are important in understanding the mechanisms of sex disparity in melanoma. Post-transcriptional regulation of prostaglandin-endoperoxide synthase (PTGS2) mRNA occurs through a complex interplay of specific trans-acting RNA-binding proteins and microRNAs. MiR-146a is a key player in melanoma, modulating immune responses and tumor microenvironment (TME). Polymorphisms in PTGS2 gene rs20415GC have been associated with an increased risk of melanoma. Epistasis between polymorphisms rs20415GC was investigated by genotyping 453 melanoma patients and 382 control individuals. The effects of testosterone and 17β-estradiol were analyzed in keratinocytes and two melanoma cell lines. The rs2910164GG showed a higher risk in the presence of the genotype rs20417CC in the male population. Testosterone and 17β-estradiol act differently on PTGS2 and miR-146a expression, depending on the cell type. Testosterone augments PTGS2 gene expression in keratinocytes and miR-146a in melanoma cells. While 17β-estradiol only increases miR-146a expression in HaCaT cells. The present study indicates a sex-specific relation between miR-146a and PTGS2 polymorphisms with melanoma cancer risk. Testosterone and 17β-estradiol act differently on the expression of PTGS2 and miR-146a depending on the skin cell type.
Collapse
Affiliation(s)
- Elisa Orlandi
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, Verona
| | - Laura Ceccuzzi
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, Verona
| | - Francesca Belpinati
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, Verona
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Malerba
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, Verona
| | - Elisabetta Trabetti
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, Verona
| | - Macarena Gomez-Lira
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, Verona
| | - Maria Grazia Romanelli
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, Verona
| |
Collapse
|
3
|
Xu H, Huang K, Shi M, Gong H, Han M, Tian W, Wang X, Zhang D. MicroRNAs in Helicobacter pylori-infected gastric cancer: Function and clinical application. Pharmacol Res 2024; 205:107216. [PMID: 38761883 DOI: 10.1016/j.phrs.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and it is associated with a combination of genetic, environmental, and microbial risk factors. Helicobacter pylori (H. pylori) is classified as a type I carcinogen, however, the exact regulatory mechanisms underlying H. pylori-induced GC are incompletely defined. MicroRNAs (miRNAs), one of small non-coding RNAs, negatively regulate gene expression through binding to their target genes. Dysregulation of miRNAs is crucial in human cancer. A noteworthy quantity of aberrant miRNAs induced by H. pylori through complex regulatory networks have been identified. These miRNAs substantially affect genetic instability, cell proliferation, apoptosis, invasion, metastasis, autophagy, chemoresistance, and the tumor microenvironment, leading to GC development and progression. Importantly, some H. pylori-associated miRNAs hold promise as therapeutic tools and biomarkers for GC prevention, diagnosis, and prognosis. Nonetheless, clinical application of miRNAs remains in its infancy with multiple issues, including sensitivity and specificity, stability, reliable delivery systems, and off-target effects. Additional research on the specific molecular mechanisms and more clinical data are still required. This review investigated the biogenesis, regulatory mechanisms, and functions of miRNAs in H. pylori-induced GC, offering novel insights into the potential clinical applications of miRNA-based therapeutics and biomarkers.
Collapse
Affiliation(s)
- Huimei Xu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Mengyu Han
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Wenji Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaoying Wang
- Department of Emergency, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
4
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Li Y, Tan S, Shen Y, Guo L. miR‑146a‑5p negatively regulates the IL‑1β‑stimulated inflammatory response via downregulation of the IRAK1/TRAF6 signaling pathway in human intestinal epithelial cells. Exp Ther Med 2022; 24:615. [PMID: 36160881 PMCID: PMC9468834 DOI: 10.3892/etm.2022.11552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
The primary pathophysiological alteration caused by inflammatory bowel disease (IBD) is prolonged, excessive inflammatory response to stimulation factors, which leads to intestinal mucosal lesions. microRNA (miR)-146a-5p is broadly activated in the mucosal immune response. At present, the biogenesis, function and role of miR-146a-5p in intestinal epithelial cells (IECs) during the pathogenesis of IBD remain elusive. The human colon cancer epithelial Caco-2 cell line was cultured with 10 ng/ml recombinant human IL-1β for 3 h to establish an in vitro IECs inflammatory model. Relative levels of miR-146a-5p and inflammatory factors (IL-6, IL-1β, TNF-α and IP-10) were measured by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Transfection of miR-146a-5p mimic or inhibitor into Caco-2 cells was performed to identify the influence of miR-146a-5p on Caco-2 cell inflammatory factors expression. The targeting relationship between miR-146a-5p and interleukin 1 receptor associated kinase 1 (IRAK1)/tumor necrosis factor receptor-associated factor 6 (TRAF6) was predicted by TargetScan 8.0. The present study demonstrated that miR-146a-5p and inflammatory factors (IL-6, IL-1β, TNF-α and IP-10) were upregulated in a dose- and time-dependent manner in IL-1β-stimulated Caco-2 cells. Moreover, upregulation of miR-146a-5p negatively regulated the expression of inflammatory factors, but the downregulation of miR-146a-5p increased their expression. The results of the present study demonstrated that miR-146a-5p decreased the expression of the inflammatory factors through targeted downregulation of IRAK1/TRAF6. These results suggest that miR-146a-5p negatively regulates the IL-1β-stimulated inflammatory response via downregulation of the IRAK1/TRAF6 signaling pathway in human IECs. Therefore, miR-146a-5p may act as an important diagnostic biomarker and treatment target of IBD.
Collapse
Affiliation(s)
- Yanli Li
- Department of Medical Microbiology and Immunology, College of Basic Medicine, Dali University, Dali, Yunnan 671003, P.R. China
| | - Shilian Tan
- Department of Medical Microbiology and Immunology, College of Basic Medicine, Dali University, Dali, Yunnan 671003, P.R. China
| | - Yuanying Shen
- Department of Medical Microbiology and Immunology, College of Basic Medicine, Dali University, Dali, Yunnan 671003, P.R. China
| | - Le Guo
- Department of Medical Microbiology and Immunology, College of Basic Medicine, Dali University, Dali, Yunnan 671003, P.R. China
| |
Collapse
|
6
|
MicroRNA-101-3p inhibits fibroblast-like synoviocyte proliferation and inflammation in rheumatoid arthritis by targeting PTGS2. Biosci Rep 2021; 40:221734. [PMID: 31894846 PMCID: PMC6960065 DOI: 10.1042/bsr20191136] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/12/2019] [Accepted: 09/01/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is the most frequently occurring inflammatory arthritis. The present study was performed to characterize the role of microRNA-101-3p (miR-101-3p) and prostaglandin-endoperoxide synthase 2 (PTGS2) in inflammation and biological activities of fibroblast-like synoviocytes (FLSs) in RA. METHODS Initially, miR-101-3p and PTGS2 expression in RA tissues of RA patients and RA rats was detected by qRT-PCR and Western blot analysis. Rat model of type II collagen-induced arthritis (CIA) was adopted to simulate RA, followed by injection of miR-101-3p mimics or siRNA against PTGS2. Next, the apoptosis in synovial tissue and the levels of tumor necrosis factor (TNF)-α, IL-1β and IL-6 were identified. Subsequently, FLSs in RA (RA-FLSs) were isolated, after which in vitro experiments were conducted to analyze cell proliferation, apoptosis, migration and invasion upon treatment of up-regulated miR-101-3p and silenced PTGS2. Furthermore, the relationship of miR-101-3p and PTGS2 was determined by bioinformatics prediction and luciferase activity assay. RESULTS We identified poorly expressed miR-101-3p and highly expressed PTGS2 in synovial tissues of RA patients and RA rats, which showed reduced synoviocyte apoptosis and enhanced inflammation. In response to miR-101-3p mimics and si-PTGS2, the RA-FLSs were observed with attenuated cell proliferation, migration and invasion, corresponding to promoted apoptosis. Down-regulation of PTGS2 could rescue the effect of inhibited miR-101-3p in synovial injury and phenotypic changes of FLS in RA rats. Notably, miR-101-3p was found to negatively regulate PTGS2. CONCLUSION Taken together, miR-101-3p reduces the joint swelling and arthritis index in RA rats by down-regulating PTGS2, as evidenced by inhibited FLS proliferation and inflammation.
Collapse
|
7
|
Riahi Rad Z, Riahi Rad Z, Goudarzi H, Goudarzi M, Mahmoudi M, Yasbolaghi Sharahi J, Hashemi A. MicroRNAs in the interaction between host-bacterial pathogens: A new perspective. J Cell Physiol 2021; 236:6249-6270. [PMID: 33599300 DOI: 10.1002/jcp.30333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Gene expression regulation plays a critical role in host-pathogen interactions, and RNAs function is essential in this process. miRNAs are small noncoding, endogenous RNA fragments that affect stability and/or translation of mRNAs, act as major posttranscriptional regulators of gene expression. miRNA is involved in regulating many biological or pathological processes through targeting specific mRNAs, including development, differentiation, apoptosis, cell cycle, cytoskeleton organization, and autophagy. Deregulated microRNA expression is associated with many types of diseases, including cancers, immune disturbances, and infection. miRNAs are a vital section of the host immune response to bacterial-made infection. Bacterial pathogens suppress host miRNA expression for their benefit, promoting survival, replication, and persistence. The role played through miRNAs in interaction with host-bacterial pathogen has been extensively studied in the past 10 years, and knowledge about these staggering molecules' function can clarify the complicated and ambiguous interactions of the host-bacterial pathogen. Here, we review how pathogens prevent the host miRNA expression. We briefly discuss emerging themes in this field, including their role as biomarkers in identifying bacterial infections, as part of the gut microbiota, on host miRNA expression.
Collapse
Affiliation(s)
- Zohreh Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Mycoplasma hyopneumoniae J elicits an antioxidant response and decreases the expression of ciliary genes in infected swine epithelial cells. Sci Rep 2020; 10:13707. [PMID: 32792522 PMCID: PMC7426424 DOI: 10.1038/s41598-020-70040-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is the most costly pathogen for swine production. Although several studies have focused on the host-bacterium association, little is known about the changes in gene expression of swine cells upon infection. To improve our understanding of this interaction, we infected swine epithelial NPTr cells with M. hyopneumoniae strain J to identify differentially expressed mRNAs and miRNAs. The levels of 1,268 genes and 170 miRNAs were significantly modified post-infection. Up-regulated mRNAs were enriched in genes related to redox homeostasis and antioxidant defense, known to be regulated by the transcription factor NRF2 in related species. Down-regulated mRNAs were enriched in genes associated with cytoskeleton and ciliary functions. Bioinformatic analyses suggested a correlation between changes in miRNA and mRNA levels, since we detected down-regulation of miRNAs predicted to target antioxidant genes and up-regulation of miRNAs targeting ciliary and cytoskeleton genes. Interestingly, most down-regulated miRNAs were detected in exosome-like vesicles suggesting that M. hyopneumoniae infection induced a modification of the composition of NPTr-released vesicles. Taken together, our data indicate that M. hyopneumoniae elicits an antioxidant response induced by NRF2 in infected cells. In addition, we propose that ciliostasis caused by this pathogen is partially explained by the down-regulation of ciliary genes.
Collapse
|
9
|
Sallas ML, Zapparoli D, Dos Santos MP, Pereira JN, Orcini WA, Peruquetti RL, Chen ES, de Arruda Cardoso Smith M, Payão SLM, Rasmussen LT. Dysregulated Expression of Apoptosis-Associated Genes and MicroRNAs and Their Involvement in Gastric Carcinogenesis. J Gastrointest Cancer 2020; 52:625-633. [PMID: 32583363 DOI: 10.1007/s12029-019-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Analyze the expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b in patients with normal gastric tissue, chronic gastritis, and gastric adenocarcinoma. METHODS The expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b by qRT-PCR was analyzed in 158 samples from 53 patients with normal gastric mucosa, 86 with chronic gastritis, and 19 with gastric cancer. RESULTS The comparison between the gastric cancer and the control group revealed a decreased expression of caspase-9 in gastric cancer tissues; considering the Helicobacter pylor presence, comparable results were revealed. Smac/DIABLO was increased in gastric cancer cells, while XIAP demonstrated no significant difference in the gene expression. The microRNA analysis revealed a decreased expression of let-7a and let-7b in samples positive to H. pylori infection and in gastric cancer group, regardless of the presence of the bacterium. CONCLUSION Our study provided some evidence of low activity of the intrinsic apoptosis pathway, as well as the influence of H. pylori on let-7a and let-7b expression.
Collapse
Affiliation(s)
| | - Diana Zapparoli
- Universidade do Sagrado Coração (USC), Bauru, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liyanage TD, Nikapitiya C, Lee J, De Zoysa M. Potential immune regulatory role of miR-146a upon Aeromonas hydrophila and Edwardsiella piscicida infections in zebrafish. Braz J Microbiol 2020; 51:931-937. [PMID: 32067211 DOI: 10.1007/s42770-020-00237-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 02/08/2023] Open
Abstract
This study was aimed to understand the expression of miR-146a in zebrafish (Danio rerio) and its role in regulating immune responses during Aeromonas hydrophila and Edwardsiella piscicida infections. The miR-146a expression was observed from the 1-h post fertilization (hpf) stage and gradually increased up to the early larval stage of zebrafish. The ubiquitous expression of miR-146a was detected in all tested tissues, with the highest level in gills. The expression of miR-146a was significantly increased in larvae when exposed to E. piscicida infection at 24 and 48 h post exposure (hpe). Intraperitoneally (i.p.) injected A. hydrophila and E. piscicida into adult zebrafish showed significant upregulation of miR-146a in gills. Furthermore, immune-related genes, toll-like receptor, tlr-4, transducing signaling pathway molecules, traf-6 and myd88 (bacteria-infected larvae and adults), transcription factor relA and mcp-1b (bacteria-infected adults), pro-inflammatory, il-6 (A. hydrophila-exposed larvae) and mmp-9 (bacteria-exposed larvae) were significantly repressed. In contrast, il-1β, tnf-α, cxcl-18b, and ccl-34a.4 were induced in both bacteria-challenged larvae and adults. Based on the results, it is suggested that endogenous miR-146a could act as an infection inducible miRNA in zebrafish upon A. hydrophila and E. piscicida infections; also, it could potentially regulate the immune responses in zebrafish.
Collapse
Affiliation(s)
- T D Liyanage
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju-si, Jeju Self-Governing Province, 63243, Republic of Korea.,Fish Vaccine Research Center, Jeju National University, Jeju-si, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea. .,Fish Vaccine Research Center, Jeju National University, Jeju-si, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
11
|
Aguilar C, Mano M, Eulalio A. Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0002-2019. [PMID: 31152522 PMCID: PMC11026079 DOI: 10.1128/microbiolspec.bai-0002-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a well-characterized class of small noncoding RNAs that act as major posttranscriptional regulators of gene expression. Accordingly, miRNAs have been associated with a wide range of fundamental biological processes and implicated in human diseases. During the past decade, miRNAs have also been recognized for their role in the complex interplay between the host and bacterial pathogens, either as part of the host response to counteract infection or as a molecular strategy employed by bacteria to subvert host pathways for their own benefit. Importantly, the characterization of downstream miRNA targets and their underlying mechanisms of action has uncovered novel molecular factors and pathways relevant to infection. In this article, we review the current knowledge of the miRNA response to bacterial infection, focusing on different bacterial pathogens, including Salmonella enterica, Listeria monocytogenes, Mycobacterium spp., and Helicobacter pylori, among others.
Collapse
Affiliation(s)
- Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-Based Therapeutics Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- RNA & Infection Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
13
|
Li N, Wang J, Yu W, Dong K, You F, Si B, Tang B, Zhang Y, Wang T, Qiao B. MicroRNA‑146a inhibits the inflammatory responses induced by interleukin‑17A during the infection of Helicobacter pylori. Mol Med Rep 2018; 19:1388-1395. [PMID: 30535468 DOI: 10.3892/mmr.2018.9725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/14/2018] [Indexed: 11/05/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is the major cause of chronic active gastritis and peptic ulcer disease. Upregulation of IL‑17A is associated with H. pylori infection in the gastric mucosa; however, the factors involved in the regulation of interleukin (IL)‑17A‑induced inflammatory responses in H. pylori‑associated gastritis remain unknown. MicroRNAs (miRNAs) serve as key post‑transcriptional regulators of gene expression and are associated with the H. pylori infection. The present study aimed to analyze the effects of IL‑17A on the expression of miR‑146a upon infection with H. pylori, as well as to identify the possible impact of miR‑146a dysregulation on the inflammatory response in vivo and in vitro. Reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the expression levels of miR‑146a in gastric epithelial cells upon IL‑17A stimulation. The effects of miR‑146a mimics on IL‑17A‑induced inflammatory responses in SGC‑7901 cells were evaluated. The effects of miR‑146a mimics on the expression levels of IL‑1 receptor‑associated kinase 1 (IRAK1) and tumor necrosis factor receptor‑associated factor 6 (TRAF6) upon IL‑17A treatment were analyzed, and the IL‑17A‑stimulated inflammation following the silencing of IRAK1 and TRAF6 was observed. In addition, the correlation between miR‑146a and IL‑17A in human gastric mucosa with H. pylori was examined. The results indicated that IL‑17A‑induced miR‑146a may regulate the inflammatory response during the infection of H. pylori in a nuclear factor‑κB‑dependent manner. Furthermore, the expression of miR‑146a and IL‑17A are positively correlated in human gastric mucosa infected with H. pylori. These data suggested that miR‑146a may serve as a biomarker or therapeutic target in gastritis therapy.
Collapse
Affiliation(s)
- Na Li
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Jianlong Wang
- Department of Pediatrics, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Wenqian Yu
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Kai Dong
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Feng You
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Biao Si
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Bin Tang
- Department of Clinical Microbiology and Immunology, Southwest Hospital and College of Medical Laboratory Science, The Third Military Medical University, Chongqing, Sichuan 400038, P.R. China
| | - Yan Zhang
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Tongjian Wang
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Bin Qiao
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
14
|
miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 2018; 3:14. [PMID: 29844933 PMCID: PMC5968033 DOI: 10.1038/s41392-018-0006-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria cause various infections worldwide, especially in immunocompromised and other susceptible individuals, and are also associated with high infant mortality rates in developing countries. MicroRNAs (miRNAs), small non-coding RNAs with evolutionarily conserved sequences, are expressed in various tissues and cells that play key part in various physiological and pathologic processes. Increasing evidence implies roles for miRNAs in bacterial infectious diseases by modulating inflammatory responses, cell penetration, tissue remodeling, and innate and adaptive immunity. This review highlights some recent intriguing findings, ranging from the correlation between aberrant expression of miRNAs with bacterial infection progression to their profound impact on host immune responses. Harnessing of dysregulated miRNAs in bacterial infection may be an approach to improving the diagnosis, prevention and therapy of infectious diseases. Changes in production of tiny cellular RNAs in response to bacterial infection could guide the development of better diagnostics and therapies. MicroRNAs regulate other genes by binding to messenger RNA strands and controlling their translation into proteins. Xikun Zhou, Min Wu and colleagues of the University of North Dakota have now reviewed current knowledge about how microRNA levels shift during infection with various bacterial pathogens. These microRNAs can modulate the immune response as well as pathways that influence metabolic activity and cell survival. Increasing studies have indicated that shifts in microRNA levels in response to different infections could provide a potential bacterial ‘fingerprint’ for achieving accurate diagnosis. With deeper insight into how different microRNAs influence infection, it might one day day become possible to target these molecules with ‘antisense’ or ‘agonist’ drugs that modulate their activity.
Collapse
|
15
|
Sundaravinayagam D, Kim HR, Wu T, Kim HH, Lee HS, Jun S, Cha JH, Kee Y, You HJ, Lee JH. miR146a-mediated targeting of FANCM during inflammation compromises genome integrity. Oncotarget 2018; 7:45976-45994. [PMID: 27351285 PMCID: PMC5216775 DOI: 10.18632/oncotarget.10275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a potent inducer of tumorigenesis. Increased DNA damage or loss of genome integrity is thought to be one of the mechanisms linking inflammation and cancer development. It has been suggested that NF-κB-induced microRNA-146 (miR146a) may be a mediator of the inflammatory response. Based on our initial observation that miR146a overexpression strongly increases DNA damage, we investigated its potential role as a modulator of DNA repair. Here, we demonstrate that FANCM, a component in the Fanconi Anemia pathway, is a novel target of miR146a. miR146a suppressed FANCM expression by directly binding to the 3′ untranslated region of the gene. miR146a-induced downregulation of FANCM was associated with inhibition of FANCD2 monoubiquitination, reduced DNA homologous recombination repair and checkpoint response, failed recovery from replication stress, and increased cellular sensitivity to cisplatin. These phenotypes were recapitulated when miR146a expression was induced by overexpressing the NF-κB subunit p65/RelA or Helicobacter pylori infection in a human gastric cell line; the phenotypes were effectively reversed with an anti-miR146a antagomir. These results suggest that undesired inflammation events caused by a pathogen or over-induction of miR146a can impair genome integrity via suppression of FANCM.
Collapse
Affiliation(s)
- Devakumar Sundaravinayagam
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hye Rim Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - TingTing Wu
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hyun Hee Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hyun-Seo Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Semo Jun
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Department of Applied Life Science, The Graduate School, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, Gwangju, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
16
|
Zabaglia LM, Sallas ML, Santos MPD, Orcini WA, Peruquetti RL, Constantino DH, Chen E, Smith MDAC, Payão SM, Rasmussen LT. Expression of miRNA‐146a, miRNA‐155, IL‐2, and TNF‐α in inflammatory response to
Helicobacter pylori
infection associated with cancer progression. Ann Hum Genet 2017; 82:135-142. [DOI: 10.1111/ahg.12234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | - Elizabeth Chen
- Universidade Federal de São Paulo (UNIFESP) São Paulo São Paulo Brazil
| | | | | | | |
Collapse
|
17
|
Griss K, Bertrams W, Sittka-Stark A, Seidel K, Stielow C, Hippenstiel S, Suttorp N, Eberhardt M, Wilhelm J, Vera J, Schmeck B. MicroRNAs Constitute a Negative Feedback Loop in Streptococcus pneumoniae-Induced Macrophage Activation. J Infect Dis 2016; 214:288-99. [PMID: 26984146 DOI: 10.1093/infdis/jiw109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae causes high mortality as a major pneumonia-inducing pathogen. In pneumonia, control of innate immunity is necessary to prevent organ damage. We assessed the role of microRNAs (miRNAs) as regulators in pneumococcal infection of human macrophages. Exposure of primary blood-derived human macrophages with pneumococci resulted in transcriptional changes in several gene clusters and a significant deregulation of 10 microRNAs. Computational network analysis retrieved miRNA-146a as one putatively important regulator of pneumococci-induced host cell activation. Its induction depended on bacterial structural integrity and was completely inhibited by blocking Toll-like receptor 2 (TLR-2) or depleting its mediator MyD88. Furthermore, induction of miRNA-146a release did not require the autocrine feedback of interleukin 1β and tumor necrosis factor α released from infected macrophages, and it repressed the TLR-2 downstream mediators IRAK-1 and TRAF-6, as well as the inflammatory factors cyclooxygenase 2 and interleukin 1β. In summary, pneumococci recognition induces a negative feedback loop, preventing excessive inflammation via miR-146a and potentially other miRNAs.
Collapse
Affiliation(s)
- Kathrin Griss
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Center Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin
| | - Wilhelm Bertrams
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Center
| | - Alexandra Sittka-Stark
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Center
| | - Kerstin Seidel
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Center
| | - Christina Stielow
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Center
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nuremberg and University Hospital of Erlangen, Germany
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nuremberg and University Hospital of Erlangen, Germany
| | - Bernd Schmeck
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Center Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg
| |
Collapse
|
18
|
Yang Q, Zhang RW, Sui PC, He HT, Ding L. Dysregulation of non-coding RNAs in gastric cancer. World J Gastroenterol 2015; 21:10956-10981. [PMID: 26494954 PMCID: PMC4607897 DOI: 10.3748/wjg.v21.i39.10956] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/28/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers in the world and a significant threat to the health of patients, especially those from China and Japan. The prognosis for patients with late stage GC receiving the standard of care treatment, including surgery, chemotherapy and radiotherapy, remains poor. Developing novel treatment strategies, identifying new molecules for targeted therapy, and devising screening techniques to detect this cancer in its early stages are needed for GC patients. The discovery of non-coding RNAs (ncRNAs), primarily microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), helped to elucidate the mechanisms of tumorigenesis, diagnosis and treatment of GC. Recently, significant research has been conducted on non-coding RNAs and how the regulatory dysfunction of these RNAs impacts the tumorigenesis of GC. In this study, we review papers published in the last five years concerning the dysregulation of non-coding RNAs, especially miRNAs and lncRNAs, in GC. We summarize instances of aberrant expression of the ncRNAs in GC and their effect on survival-related events, including cell cycle regulation, AKT signaling, apoptosis and drug resistance. Additionally, we evaluate how ncRNA dysregulation affects the metastatic process, including the epithelial-mesenchymal transition, stem cells, transcription factor activity, and oncogene and tumor suppressor expression. Lastly, we determine how ncRNAs affect angiogenesis in the microenvironment of GC. We further discuss the use of ncRNAs as potential biomarkers for use in clinical screening, early diagnosis and prognosis of GC. At present, no ideal ncRNAs have been identified as targets for the treatment of GC.
Collapse
|
19
|
Libânio D, Dinis-Ribeiro M, Pimentel-Nunes P. Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World J Clin Oncol 2015; 6:111-132. [PMID: 26468448 PMCID: PMC4600186 DOI: 10.5306/wjco.v6.i5.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
The accepted paradigm for intestinal-type gastric cancer pathogenesis is a multistep progression from chronic gastritis induced by Helicobacter pylori (H. pylori) to gastric atrophy, intestinal metaplasia, dysplasia and ultimately gastric cancer. The genetic and molecular mechanisms underlying disease progression are still not completely understood as only a fraction of colonized individuals ever develop neoplasia suggesting that bacterial, host and environmental factors are involved. MicroRNAs are noncoding RNAs that may influence H. pylori-related pathology through the regulation of the transcription and expression of various genes, playing an important role in inflammation, cell proliferation, apoptosis and differentiation. Indeed, H. pylori have been shown to modify microRNA expression in the gastric mucosa and microRNAs are involved in the immune host response to the bacteria and in the regulation of the inflammatory response. MicroRNAs have a key role in the regulation of inflammatory pathways and H. pylori may influence inflammation-mediated gastric carcinogenesis possibly through DNA methylation and epigenetic silencing of tumor suppressor microRNAs. Furthermore, microRNAs influenced by H. pylori also have been found to be involved in cell cycle regulation, apoptosis and epithelial-mesenchymal transition. Altogether, microRNAs seem to have an important role in the progression from gastritis to preneoplastic conditions and neoplastic lesions and since each microRNA can control the expression of hundreds to thousands of genes, knowledge of microRNAs target genes and their functions are of paramount importance. In this article we present a comprehensive review about the role of microRNAs in H. pylori gastric carcinogenesis, identifying the microRNAs downregulated and upregulated in the infection and clarifying their biological role in the link between immune host response, inflammation, DNA methylation and gastric carcinogenesis.
Collapse
|
20
|
Wu K, Yang L, Li C, Zhu CH, Wang X, Yao Y, Jia YJ. MicroRNA-146a enhances Helicobacter pylori induced cell apoptosis in human gastric cancer epithelial cells. Asian Pac J Cancer Prev 2015; 15:5583-6. [PMID: 25081668 DOI: 10.7314/apjcp.2014.15.14.5583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection induces apoptosis in gastric epithelial cells, and this occurrence may link to gastric carcinogenesis. However, the regulatory mechanism of H. pylori-induced apoptosis is not clear. MicroRNA-146a has been implicated as a key regulator of the immune system. This report describes our discovery of molecular mechanisms of microRNA-146a regulation of apoptosis in human gastric cancer cells. We found that overexpression of microRNA-146a by transfecting microRNA-146a mimics could significantly enhance apoptosis, and this up-regulation was triggered by COX-2 inhibition. Furthermore, we found that microRNA-146a density was positively correlated with apoptosis rates in H. pylori-positive gastric cancer tissues and intratumoral microRNA-146a density was negatively correlated with lymph node metastasis among H. pylori-positive gastric cancer patients. Understanding the important roles of microRNA-146a in regulating cell apoptosis in H. pylori infected human gastric cancer cells will contribute to the development of microRNA targeted therapy in the future.
Collapse
Affiliation(s)
- Kai Wu
- Department of Gastroenterology, 309 Hospital of Chinese People's Liberation Army, Beijing, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang L, Long Y, Li C, Cao L, Gan H, Huang K, Jia Y. Genome-wide analysis of long noncoding RNA profile in human gastric epithelial cell response to Helicobacter pylori. Jpn J Infect Dis 2014; 68:63-6. [PMID: 25420666 DOI: 10.7883/yoken.jjid.2014.149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) are an important class of pervasive genes, and their misregulation has been shown in various types of diseases. However, the relationship between lncRNAs and the immune response to pathogen infection has been rarely reported. Helicobacter pylori is a major human pathogenic bacterium that causes gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. The regulatory mechanism of the H. pylori-induced immune response is not yet clear. In the present study, we identified nonoverlapping signatures of a small number of lncRNAs that were aberrantly expressed in H. pylori-infected gastric epithelial cells using microarray analysis followed by bioassays. From microarray data, we found that 23 lncRNAs were upregulated and 21 were downregulated. Five lncRNAs, XLOC_004562, XLOC_005912, XLOC_000620, XLOC_004122, and XLOC_014388, were further evaluated using quantitative reverse transcription-PCR, and the results matched well with microarray data. In addition, XLOC_004122 and XLOC_014388 were decreased in gastric mucosal tissues of H. pylori-positive patients. Differentially expressed lncRNAs may play a partial or key role in the immune response to H. pylori, and this may provide potential targets for the future treatment of H. pylori-related diseases.
Collapse
Affiliation(s)
- Liu Yang
- Department of Pathophysiology, Dalian Medical University
| | | | | | | | | | | | | |
Collapse
|
22
|
MicroRNAs in the interaction between host and bacterial pathogens. FEBS Lett 2014; 588:4140-7. [PMID: 25128459 DOI: 10.1016/j.febslet.2014.08.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a central role in the post-transcriptional control of gene expression, that have been implicated in a wide-range of biological processes. Regulation of miRNA expression is increasingly recognized as a crucial part of the host response to infection by bacterial pathogens, as well as a novel molecular strategy exploited by bacteria to manipulate host cell pathways. Here, we review the current knowledge of bacterial pathogens that modulate host miRNA expression, focusing on mammalian host cells, and the implications of miRNA regulation on the outcome of infection. The emerging role of commensal bacteria, as part of the gut microbiota, on host miRNA expression in the presence or absence of bacterial pathogens is also discussed.
Collapse
|
23
|
The Mammalian response to virus infection is independent of small RNA silencing. Cell Rep 2014; 8:114-25. [PMID: 24953656 DOI: 10.1016/j.celrep.2014.05.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/24/2014] [Accepted: 05/14/2014] [Indexed: 01/18/2023] Open
Abstract
A successful cellular response to virus infection is essential for evolutionary survival. In plants, arthropods, and nematodes, cellular antiviral defenses rely on RNAi. Interestingly, the mammalian response to virus is predominantly orchestrated through interferon (IFN)-mediated induction of antiviral proteins. Despite the potency of the IFN system, it remains unclear whether mammals also have the capacity to employ antiviral RNAi. Here, we investigated this by disabling IFN function, small RNA function, or both activities in the context of virus infection. We find that loss of small RNAs in the context of an in vivo RNA virus infection lowers titers due to reduced transcriptional repression of the host antiviral response. In contrast, enabling a virus with the capacity to inhibit the IFN system results in increased titers. Taken together, these results indicate that small RNA silencing is not a physiological contributor to the IFN-mediated cellular response to virus infection.
Collapse
|
24
|
Analysis of miRNA expression profiling in human macrophages responding to Mycobacterium infection: Induction of the immune regulator miR-146a. J Infect 2014; 68:553-61. [DOI: 10.1016/j.jinf.2013.12.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 12/18/2022]
|
25
|
Adyshev DM, Elangovan VR, Moldobaeva N, Mapes B, Sun X, Garcia JGN. Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium. Am J Respir Cell Mol Biol 2014; 50:409-18. [PMID: 24053186 DOI: 10.1165/rcmb.2013-0292oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increased lung vascular permeability and alveolar edema are cardinal features of inflammatory conditions such as acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). We previously demonstrated that pre-B-cell colony-enhancing factor (PBEF)/NAMPT, the proinflammatory cytokine encoded by NAMPT, participates in ARDS and VILI inflammatory syndromes. The present study evaluated posttranscriptional regulation of PBEF/NAMPT gene expression in human lung endothelium via 3'-untranslated region (UTR) microRNA (miRNA) binding. In silico analysis identified hsa-miR-374a and hsa-miR-568 as potential miRNA candidates. Increased PBEF/NAMPT transcription (by RT-PCR) and expression (by Western blotting) induced by 18% cyclic stretch (CS) (2 h: 3.4 ± 0.06 mRNA fold increase (FI); 10 h: 1.5 ± 0.06 protein FI) and by LPS (4 h: 3.8 ± 0.2 mRNA FI; 48 h: 2.6 ± 0.2 protein FI) were significantly attenuated by transfection with mimics of hsa-miR-374a or hsa-miR-568 (40-60% reductions each). LPS and 18% CS increased the activity of a PBEF/NAMPT 3'-UTR luciferase reporter (2.4-3.25 FI) with induction reduced by mimics of each miRNA (44-60% reduction). Specific miRNA inhibitors (antagomirs) for each PBEF/NAMPT miRNA significantly increased the endogenous PBEF/NAMPT mRNA (1.4-3.4 ± 0.1 FI) and protein levels (1.2-1.4 ± 0.1 FI) and 3'-UTR luciferase activity (1.4-1.7 ± 0.1 FI) compared with negative antagomir controls. Collectively, these data demonstrate that increased PBEF/NAMPT expression induced by bioactive agonists (i.e., excessive mechanical stress, LPS) involves epigenetic regulation with hsa-miR-374a and hsa-miR-568, representing novel therapeutic strategies to reduce inflammatory lung injury.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
26
|
Cadamuro ACT, Rossi AFT, Maniezzo NM, Silva AE. Helicobacter pylori infection: host immune response, implications on gene expression and microRNAs. World J Gastroenterol 2014; 20:1424-37. [PMID: 24587619 PMCID: PMC3925852 DOI: 10.3748/wjg.v20.i6.1424] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the most common bacterial infection worldwide. Persistent infection of the gastric mucosa leads to inflammatory processes and may remain silent for decades or progress causing more severe diseases, such as gastric adenocarcinoma. The clinical consequences of H. pylori infection are determined by multiple factors, including host genetic predisposition, gene regulation, environmental factors and heterogeneity of H. pylori virulence factors. After decades of studies of this successful relationship between pathogen and human host, various mechanisms have been elucidated. In this review, we have made an introduction on H. pylori infection and its virulence factors, and focused mainly on modulation of host immune response triggered by bacteria, changes in the pattern of gene expression in H. pylori-infected gastric mucosa, with activation of gene transcription involved in defense mechanisms, inflammatory and immunological response, cell proliferation and apoptosis. We also highlighted the role of bacteria eradication on gene expression levels. In addition, we addressed the recent involvement of different microRNAs in precancerous lesions, gastric cancer, and inflammatory processes induced by bacteria. New discoveries in this field may allow a better understanding of the role of major factors involved in the pathogenic mechanisms of H. pylori.
Collapse
|
27
|
Zago M, Rico de Souza A, Hecht E, Rousseau S, Hamid Q, Eidelman DH, Baglole CJ. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts. Toxicol Lett 2014; 226:107-16. [PMID: 24472607 DOI: 10.1016/j.toxlet.2014.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 01/23/2023]
Abstract
Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants.
Collapse
Affiliation(s)
- Michela Zago
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Emelia Hecht
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Carolyn J Baglole
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| |
Collapse
|
28
|
Kim JH, Kim SJ. Overexpression of MicroRNA-25 by Withaferin A Induces Cyclooxygenase-2 Expression in Rabbit Articular Chondrocytes. J Pharmacol Sci 2014; 125:83-90. [DOI: 10.1254/jphs.13232fp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Adyshev DM, Moldobaeva N, Mapes B, Elangovan V, Garcia JGN. MicroRNA regulation of nonmuscle myosin light chain kinase expression in human lung endothelium. Am J Respir Cell Mol Biol 2013; 49:58-66. [PMID: 23492194 DOI: 10.1165/rcmb.2012-0397oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Increased lung vascular permeability, the consequence of endothelial cell (EC) barrier dysfunction, is a cardinal feature of inflammatory conditions such as acute lung injury and sepsis and leads to lethal physiological dysfunction characterized by alveolar flooding, hypoxemia, and pulmonary edema. We previously demonstrated that the nonmuscle myosin light chain kinase isoform (nmMLCK) plays a key role in agonist-induced pulmonary EC barrier regulation. The present study evaluated posttranscriptional regulation of MYLK expression, the gene encoding nmMLCK, via 3' untranslated region (UTR) binding by microRNAs (miRNAs) with in silico analysis identifying hsa-miR-374a, hsa-miR-374b, hsa-miR-520c-3p, and hsa-miR-1290 as miRNA candidates. We identified increased MYLK gene transcription induced by TNF-α (24 h; 4.7 ± 0.45 fold increase [FI]), LPS (4 h; 2.85 ± 0.15 [FI]), and 18% cyclic stretch (24 h; 4.6 ± 0.24 FI) that was attenuated by transfection of human lung ECs with mimics of hsa-miR-374a, hsa-miR-374b, hsa-miR-520c-3p, or hsa-miR-1290 (20-80% reductions by each miRNA). TNF-α, LPS, and 18% cyclic stretch each increased the activity of a MYLK 3'UTR luciferase reporter (2.5-7.0 FI) with induction reduced by mimics of each miRNA (30-60% reduction). MiRNA inhibitors (antagomirs) for each MYLK miRNA significantly increased 3'UTR luciferase activity (1.2-2.3 FI) and rescued the decreased MLCK-3'UTR reporter activity produced by miRNA mimics (70-110% increases for each miRNA; P < 0.05). These data demonstrate that increased human lung EC expression of MYLK by bioactive agonists (excessive mechanical stress, LPS, TNF-α) is regulated in part by specific miRNAs (hsa-miR-374a, hsa-miR-374b, hsa-miR-520c-3p, and hsa-miR-1290), representing a novel therapeutic strategy for reducing inflammatory lung injury.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
30
|
Zabaleta J. MicroRNA: A Bridge from H. pylori Infection to Gastritis and Gastric Cancer Development. Front Genet 2012; 3:294. [PMID: 23248648 PMCID: PMC3521996 DOI: 10.3389/fgene.2012.00294] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/28/2012] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is a recognized risk factor for gastric cancer. The disease is one of the most common in the world and explains for a significant number of cancer cases and cancer-associated deaths worldwide. H. pylori infection induces huge array of responses at the gastric epithelial cells and the immune system, inducing both pro- and anti-inflammatory molecules that are intended to either perpetuate or control the infection. Despite the strong immune response, the infection is not cleared and can persist mostly without causing major significant discomfort in the human host. Among the mediators induced in response to the infection, microRNA (miRNA) have the potential to play a major impact on the outcome of the bacteria-host interaction. These miRNA are small 18-24 nucleotide long nucleotide molecules that can interact with mRNA molecules and block their translation into proteins or induce their degradation. Many efforts have been put into the generation of miRNA profiles and their role in gastric cancer. This has led to the identification of miRNA associated with promoting the inflammatory response initiated by the H. pylori infection, increasing the malignant progression of the gastric epithelium, and enhancing the invasiveness and migratory capacity of cancer cells. However, at the same time, several miRNA have been associated with events that are totally opposite, leading to reduced inflammation, inhibition of malignancy and increased apoptosis of transformed cells. In summary, as it is in many other examples, the role played by miRNA in gastric cancer is the results of a delicate balance between pro- and anti-cancer miRNA, and this balance is modified by the interaction of many players, many of which are still waiting to be discovered.
Collapse
Affiliation(s)
- Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|