1
|
Tsukamoto M, Goto M, Hitosugi T, Matsuo K, Yokoyama T. Comparison of the tidal volume by the recruitment maneuver combined with positive end-expiratory pressure for mechanically ventilated children. Sci Rep 2023; 13:18690. [PMID: 37907687 PMCID: PMC10618173 DOI: 10.1038/s41598-023-45441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The recruitment maneuver (RM) combined with PEEP to prevent atelectasis have beneficial effects. However, the change in tidal volume (VT) due to RM combined with PEEP in pediatric patients during the induction of general anesthesia is unknown. Therefore, we assessed the effects of RM combined with PEEP on VT. Pediatric patients were divided into three groups: infants, preschool children, and school children. The RM was performed by maintaining pressure control continuous mandatory ventilation (PC-CMV) with a 15 cmH2O and PEEP increase of 5 cmH2O. VT, respiratory function and hemodynamics were monitored before and after RM combined with PEEP. VT (mL) /ideal body weight (kg) before vs. after RM combined with PEEP were 9 vs 12 mL/kg (p < 0.05) in the infants, 9 vs 11 mL/kg (p < 0.05) in the preschool children, 8 vs 10 mL/kg (p < 0.05) in the school children, respectively. HR and BP before and after RM combined with PEEP increased by 2-3% and decreased by 4-7% in all groups. RM combined with PEEP resulted in an increase in VT per ideal body weight (1.1-1.2%). Therefore, this RM combined with PEEP method might improve the lung function in pediatric patients.
Collapse
Affiliation(s)
- Masanori Tsukamoto
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan.
| | - Maho Goto
- Department of Dental Anesthesiology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Hitosugi
- Department of Dental Anesthesiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kazuya Matsuo
- Department of Control Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Takeshi Yokoyama
- Department of Dental Anesthesiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Schaefer MS, Serpa Neto A, Pelosi P, Gama de Abreu M, Kienbaum P, Schultz MJ, Meyer-Treschan TA. Temporal Changes in Ventilator Settings in Patients With Uninjured Lungs: A Systematic Review. Anesth Analg 2020; 129:129-140. [PMID: 30222649 DOI: 10.1213/ane.0000000000003758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In patients with uninjured lungs, increasing evidence indicates that tidal volume (VT) reduction improves outcomes in the intensive care unit (ICU) and in the operating room (OR). However, the degree to which this evidence has translated to clinical changes in ventilator settings for patients with uninjured lungs is unknown. To clarify whether ventilator settings have changed, we searched MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science for publications on invasive ventilation in ICUs or ORs, excluding those on patients <18 years of age or those with >25% of patients with acute respiratory distress syndrome (ARDS). Our primary end point was temporal change in VT over time. Secondary end points were changes in maximum airway pressure, mean airway pressure, positive end-expiratory pressure, inspiratory oxygen fraction, development of ARDS (ICU studies only), and postoperative pulmonary complications (OR studies only) determined using correlation analysis and linear regression. We identified 96 ICU and 96 OR studies comprising 130,316 patients from 1975 to 2014 and observed that in the ICU, VT size decreased annually by 0.16 mL/kg (-0.19 to -0.12 mL/kg) (P < .001), while positive end-expiratory pressure increased by an average of 0.1 mbar/y (0.02-0.17 mbar/y) (P = .017). In the OR, VT size decreased by 0.09 mL/kg per year (-0.14 to -0.04 mL/kg per year) (P < .001). The change in VTs leveled off in 1995. Other intraoperative ventilator settings did not change in the study period. Incidences of ARDS (ICU studies) and postoperative pulmonary complications (OR studies) also did not change over time. We found that, during a 39-year period, from 1975 to 2014, VTs in clinical studies on mechanical ventilation have decreased significantly in the ICU and in the OR.
Collapse
Affiliation(s)
- Maximilian S Schaefer
- From the Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Ary Serpa Neto
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Program of Post-Graduation, Innovation and Research, Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Peter Kienbaum
- From the Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, the Netherlands
| | | |
Collapse
|
3
|
Zochios V, Klein AA, Gao F. Protective Invasive Ventilation in Cardiac Surgery: A Systematic Review With a Focus on Acute Lung Injury in Adult Cardiac Surgical Patients. J Cardiothorac Vasc Anesth 2018; 32:1922-1936. [DOI: 10.1053/j.jvca.2017.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 12/19/2022]
|
4
|
Clinical Correlation of Early Atelectasis after Bilateral Internal Thoracic Artery Harvest for Coronary Artery Bypass Grafting. Heart Lung Circ 2015; 25:620-5. [PMID: 26706650 DOI: 10.1016/j.hlc.2015.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Atelectasis is a significant complication after cardiac surgery. The current study was designed to assess the significance of atelectasis after bilateral internal thoracic artery (BITA) harvest. METHODS The ICU admission chest x-ray of 565 patients undergoing BITA was reviewed. Linear regression modelling was used to assess the relationship between atelectasis and oxygenation as well as patient variables to length of ventilation and length of stay in the Intensive Care Unit (ICU). RESULTS Eighty-nine patients (15.8%) had Grade 2/3 atelectasis which was significantly more common on the left as compared to the right (left 0.149 95% CI [0.119-0.178], right 0.027 95% CI [0.013-0.040], p<0.001). Grade 2/3 atelectasis on the right was associated with a significant drop in the pO2 (p=0.001) and the per cent O2-fractional O2 (PF) ratio (p=0.002). Factors associated with increased ventilation time included presence of Grade 2/3 atelectasis (p=0.001) and peripheral vascular disease (PVD) (p<0.001), both of which were predictors of prolonged ICU length of stay (p=0.002 and p<0.001 respectively). CONCLUSIONS Early atelectasis is related to impaired oxygenation, prolonged ventilation and prolonged ICU stay. Future research should focus on strategies to minimise atelectasis and to determine if these changes translate into better patient outcomes.
Collapse
|
5
|
Badenes R, Lozano A, Belda FJ. Postoperative pulmonary dysfunction and mechanical ventilation in cardiac surgery. Crit Care Res Pract 2015; 2015:420513. [PMID: 25705516 PMCID: PMC4332756 DOI: 10.1155/2015/420513] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 12/19/2022] Open
Abstract
Postoperative pulmonary dysfunction (PPD) is a frequent and significant complication after cardiac surgery. It contributes to morbidity and mortality and increases hospitalization stay and its associated costs. Its pathogenesis is not clear but it seems to be related to the development of a systemic inflammatory response with a subsequent pulmonary inflammation. Many factors have been described to contribute to this inflammatory response, including surgical procedure with sternotomy incision, effects of general anesthesia, topical cooling, and extracorporeal circulation (ECC) and mechanical ventilation (VM). Protective ventilation strategies can reduce the incidence of atelectasis (which still remains one of the principal causes of PDD) and pulmonary infections in surgical patients. In this way, the open lung approach (OLA), a protective ventilation strategy, has demonstrated attenuating the inflammatory response and improving gas exchange parameters and postoperative pulmonary functions with a better residual functional capacity (FRC) when compared with a conventional ventilatory strategy. Additionally, maintaining low frequency ventilation during ECC was shown to decrease the incidence of PDD after cardiac surgery, preserving lung function.
Collapse
Affiliation(s)
- Rafael Badenes
- Department of Anesthesiology and Surgical Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Angels Lozano
- Department of Anesthesiology and Surgical Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - F. Javier Belda
- Department of Anesthesiology and Surgical Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
6
|
Tao T, Bo L, Chen F, Xie Q, Zou Y, Hu B, Li J, Deng X. Effect of protective ventilation on postoperative pulmonary complications in patients undergoing general anaesthesia: a meta-analysis of randomised controlled trials. BMJ Open 2014; 4:e005208. [PMID: 24961718 PMCID: PMC4078782 DOI: 10.1136/bmjopen-2014-005208] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To determine whether anaesthetised patients undergoing surgery could benefit from intraoperative protective ventilation strategies. METHODS MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials (CENTRAL) were searched up to February 2014. Eligible studies evaluated protective ventilation versus conventional ventilation in anaesthetised patients without lung injury at the onset of mechanical ventilation. The primary outcome was the incidence of postoperative pulmonary complications. Included studies must report at least one of the following end points: the incidence of atelectasis or acute lung injury or pulmonary infections. RESULTS Four studies (594 patients) were included. Meta-analysis using a random effects model showed a significant decrease in the incidence of atelectasis (OR=0.36; 95% CI 0.22 to 0.60; p<0.0001; I(2)=0%) and pulmonary infections (OR=0.30; 95% CI 0.14 to 0.68; p=0.004; I(2)=20%) in patients receiving protective ventilation. Ventilation with protective strategies did not reduce the incidence of acute lung injury (OR=0.40; 95% CI 0.07 to 2.15; p=0.28; I(2)=12%), all-cause mortality (OR=0.77; 95% CI 0.33 to 1.79; p=0.54; I(2)=0%), length of hospital stay (weighted mean difference (WMD)=-0.52 day, 95% CI -4.53 to 3.48 day; p=0.80; I(2)=63%) or length of intensive care unit stay (WMD=-0.55 day, 95% CI -2.19 to 1.09 day; p=0.51; I(2)=39%). CONCLUSIONS Intraoperative use of protective ventilation strategies has the potential to reduce the incidence of postoperative pulmonary complications in patients undergoing general anaesthesia. Prospective, well-designed clinical trials are warranted to confirm the beneficial effects of protective ventilation strategies in surgical patients.
Collapse
Affiliation(s)
- Tianzhu Tao
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lulong Bo
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feng Chen
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qun Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yun Zou
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Baoji Hu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jinbao Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Schreiber JU, Lancé MD, de Korte M, Artmann T, Aleksic I, Kranke P. The Effect of Different Lung-Protective Strategies in Patients During Cardiopulmonary Bypass: A Meta-Analysis and Semiquantitative Review of Randomized Trials. J Cardiothorac Vasc Anesth 2012; 26:448-54. [DOI: 10.1053/j.jvca.2012.01.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Indexed: 12/31/2022]
|