1
|
Wang X, Li S, Pang S, Liu Q, Song Y. Regulation of AreA on lipid biosynthesis under different nitrogen sources and C/N ratios in the model oleaginous fungus Mucor circinelloides. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159537. [PMID: 39032627 DOI: 10.1016/j.bbalip.2024.159537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mucor circinelloides has been exploited as model filamentous fungi for studies of genetic manipulation of lipogenesis. It is widely recognized that lipid accumulation is increased when there is a lack of nitrogen source in oleaginous microorganism. Nitrogen metabolism in filamentous fungi is a complex process that can be regulated by the global nitrogen regulator AreA. In this study, we cultivated the areA-knockout and -overexpression strains obtained in our previous study, using 20 different nitrogen sources. It emerged that the disruption of AreA in M. circinelloides reduced its sensitivity to nitrogen availability, resulting in increased lipid synthesis. Specially, the areA-knockout strain was unable to fully utilize many nitrogen sources but the ammonium and glutamate. We continued to investigate lipid production at different molar C/N ratios using glucose as sole carbon source and ammonium sulfate as sole nitrogen source, of which the high C/N ratios activate high lipid accumulation. By comparing the experimental results with transcriptional analysis, we were able to identify the optimal process conditions suitable for lipid accumulation and potential targets for future metabolic engineering.
Collapse
Affiliation(s)
- Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shuxian Pang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| |
Collapse
|
2
|
Müller T, Neuhäuser B, Ludewig U, Houdinet G, Zimmermann SD, Courty PE, Wipf D. New insights into HcPTR2A and HcPTR2B, two high-affinity peptide transporters from the ectomycorrhizal model fungus Hebeloma cylindrosporum. MYCORRHIZA 2020; 30:735-747. [PMID: 32820366 DOI: 10.1007/s00572-020-00983-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
While plants mainly rely on the use of inorganic nitrogen sources like ammonium and nitrate, soil-borne microorganisms like the ectomycorrhizal fungus Hebeloma cylindrosporum can also take up soil organic N in the form of amino acids and peptides that they use as nitrogen and carbon sources. Following the previous identification and functional expression in yeast of two PTR-like peptide transporters, the present study details the functions and substrates of HcPTR2A and HcPTR2B by analysing their transport kinetics in Xenopus laevis oocytes. While both transporters mediated high-affinity di- and tripeptide transport, HcPTR2A also showed low-affinity transport of several amino acids-mostly hydrophobic ones with large side chains.
Collapse
Affiliation(s)
- Tobias Müller
- IZMB, Transport in Ectomycorrhiza, University Bonn, 53115, Bonn, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, D-70593, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, D-70593, Stuttgart, Germany
| | | | | | - Pierre Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 17 Rue Sully, 21000, Dijon, France
| | - Daniel Wipf
- IZMB, Transport in Ectomycorrhiza, University Bonn, 53115, Bonn, Germany.
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 17 Rue Sully, 21000, Dijon, France.
| |
Collapse
|
3
|
Stuart EK, Plett KL. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. FRONTIERS IN PLANT SCIENCE 2020; 10:1658. [PMID: 31993064 PMCID: PMC6971170 DOI: 10.3389/fpls.2019.01658] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/25/2019] [Indexed: 05/12/2023]
Abstract
Symbiosis with ectomycorrhizal (ECM) fungi is an advantageous partnership for trees in nutrient-limited environments. Ectomycorrhizal fungi colonize the roots of their hosts and improve their access to nutrients, usually nitrogen (N) and, in exchange, trees deliver a significant portion of their photosynthetic carbon (C) to the fungi. This nutrient exchange affects key soil processes and nutrient cycling, as well as plant health, and is therefore central to forest ecosystem functioning. Due to their ecological importance, there is a need to more accurately understand ECM fungal mediated C and N movement within forest ecosystems such that we can better model and predict their role in soil processes both now and under future climate scenarios. There are a number of hurdles that we must overcome, however, before this is achievable such as understanding how the evolutionary history of ECM fungi and their inter- and intra- species variability affect their function. Further, there is currently no generally accepted universal mechanism that appears to govern the flux of nutrients between fungal and plant partners. Here, we consider the current state of knowledge on N acquisition and transport by ECM fungi and how C and N exchange may be related or affected by environmental conditions such as N availability. We emphasize the role that modern genomic analysis, molecular biology techniques and more comprehensive and standardized experimental designs may have in bringing cohesion to the numerous ecological studies in this area and assist us in better understanding this important symbiosis. These approaches will help to build unified models of nutrient exchange and develop diagnostic tools to study these fungi at various scales and environments.
Collapse
Affiliation(s)
| | - Krista L. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
4
|
Garcia K, Delaux PM, Cope KR, Ané JM. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. THE NEW PHYTOLOGIST 2015; 208:79-87. [PMID: 25982949 DOI: 10.1111/nph.13423] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/25/2015] [Indexed: 05/08/2023]
Abstract
Ectomycorrhizal (ECM) symbioses are among the most widespread associations between roots of woody plants and soil fungi in forest ecosystems. These associations contribute significantly to the sustainability and sustainagility of these ecosystems through nutrient cycling and carbon sequestration. Unfortunately, the molecular mechanisms controlling the mutual recognition between both partners are still poorly understood. Elegant work has demonstrated that effector proteins from ECM and arbuscular mycorrhizal (AM) fungi regulate host defenses by manipulating plant hormonal pathways. In parallel, genetic and evolutionary studies in legumes showed that a 'common symbiosis pathway' is required for the establishment of the ancient AM symbiosis and has been recruited for the rhizobia-legume association. Given that genes of this pathway are present in many angiosperm trees that develop ectomycorrhizas, we propose their potential involvement in some but not all ECM associations. The maintenance of a successful long-term relationship seems strongly regulated by resource allocation between symbiotic partners, suggesting that nutrients themselves may serve as signals. This review summarizes our current knowledge on the early and late signal exchanges between woody plants and ECM fungi, and we suggest future directions for decoding the molecular basis of the underground dance between trees and their favorite fungal partners.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kevin R Cope
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Suz LM, Barsoum N, Benham S, Dietrich HP, Fetzer KD, Fischer R, García P, Gehrman J, Kristöfel F, Manninger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Sánchez G, Schröck HW, Schubert A, Verheyen K, Verstraeten A, Bidartondo MI. Environmental drivers of ectomycorrhizal communities in Europe's temperate oak forests. Mol Ecol 2014; 23:5628-44. [DOI: 10.1111/mec.12947] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Laura M. Suz
- Royal Botanic Gardens, Kew; Richmond Surrey TW9 3DS UK
- Imperial College London; London SW7 2AZ UK
| | | | - Sue Benham
- Forest Research; Farnham Surrey GU10 4LH UK
| | | | | | - Richard Fischer
- Thünen Institute of International Forestry and Forest Economics; Hamburg 21031 Germany
| | - Paloma García
- Ministerio de Agricultura; Alimentacióny Medio Ambiente; Madrid 28010 Spain
| | - Joachim Gehrman
- Landesamt für Natur; Umwelt und Verbraucherschutz NRW; Recklinghausen D 45659 Germany
| | - Ferdinand Kristöfel
- Federal Research and Training Centre for Forests; Natural Hazards and Landscape; Vienna A-1131 Austria
| | | | - Stefan Neagu
- Forest Research and Management Institute (ICAS); Voluntari 077190 Romania
| | - Manuel Nicolas
- Office National des Forêts (RENECOFOR); Fontainebleau 77300 France
| | | | - Stephan Raspe
- Bavarian State Institute of Forestry; Freising D-85354 Germany
| | - Gerardo Sánchez
- Ministerio de Agricultura; Alimentacióny Medio Ambiente; Madrid 28010 Spain
| | - Hans Werner Schröck
- Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz; Trippstadt 67705 Germany
| | - Alfred Schubert
- Bavarian State Institute of Forestry; Freising D-85354 Germany
| | | | - Arne Verstraeten
- Research Institute for Nature and Forest; Geraardsbergen 9500 Belgium
| | - Martin I. Bidartondo
- Royal Botanic Gardens, Kew; Richmond Surrey TW9 3DS UK
- Imperial College London; London SW7 2AZ UK
| |
Collapse
|
6
|
Velmala SM, Rajala T, Heinonsalo J, Taylor AFS, Pennanen T. Profiling functions of ectomycorrhizal diversity and root structuring in seedlings of Norway spruce (Picea abies) with fast- and slow-growing phenotypes. THE NEW PHYTOLOGIST 2014; 201:610-622. [PMID: 24117652 DOI: 10.1111/nph.12542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
We studied the role of taxonomical and functional ectomycorrhizal (ECM) fungal diversity in root formation and nutrient uptake by Norway spruce (Picea abies) seedlings with fast- and slow-growing phenotypes. Seedlings were grown with an increasing ECM fungal diversity gradient from one to four species and sampled before aboveground growth differences between the two phenotypes were apparent. ECM fungal colonization patterns were determined and functional diversity was assayed via measurements of potential enzyme activities of eight exoenzymes probably involved in nutrient mobilization. Phenotypes did not vary in their receptiveness to different ECM fungal species. However, seedlings of slow-growing phenotypes had higher fine-root density and thus more condensed root systems than fast-growing seedlings, but the potential enzyme activities of ectomycorrhizas did not differ qualitatively or quantitatively. ECM species richness increased host nutrient acquisition potential by diversifying the exoenzyme palette. Needle nitrogen content correlated positively with high chitinase activity of ectomycorrhizas. Rather than fast- and slow-growing phenotypes exhibiting differing receptiveness to ECM fungi, our results suggest that distinctions in fine-root structuring and in the belowground growth strategy already apparent at early stages of seedling development may explain later growth differences between fast- and slow-growing families.
Collapse
Affiliation(s)
| | - Tiina Rajala
- Finnish Forest Research Institute - Metla, PO Box 18, 01301 Vantaa, Finland
| | - Jussi Heinonsalo
- Viikki Biocenter, Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, PO Box 56, 00014 University of Helsinki, Finland
| | - Andy F S Taylor
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Taina Pennanen
- Finnish Forest Research Institute - Metla, PO Box 18, 01301 Vantaa, Finland
| |
Collapse
|
7
|
Kemppainen MJ, Pardo AG. LbNrt RNA silencing in the mycorrhizal symbiont Laccaria bicolor reveals a nitrate-independent regulatory role for a eukaryotic NRT2-type nitrate transporter. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:353-366. [PMID: 23754716 DOI: 10.1111/1758-2229.12029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/13/2012] [Indexed: 06/02/2023]
Abstract
Fungal nitrogen metabolism plays a fundamental role in function of mycorrhizal symbiosis and consequently in nutrient cycling of terrestrial ecosystems. Despite its global ecological relevance the information on control and molecular regulation of nitrogen utilization in mycorrhizal fungi is very limited. We have extended the nitrate utilization RNA silencing studies of the model mycorrhizal basidiomycete, Laccaria bicolor, by altering the expression of LbNrt, the sole nitrate transporter-encoding gene of the fungus. Here we report the first nutrient transporter mutants for mycorrhizal fungi. Silencing of LbNrt results in fungal strains with minimal detectable LbNrt transcript levels, significantly reduced growth capacity on nitrate and altered symbiotic interaction with poplar. Transporter silencing also creates marked co-downregulation of whole Laccaria fHANT-AC (fungal high-affinity nitrate assimilation cluster). Most importantly, this effect on the nitrate utilization pathway appears independent of extracellular nitrate or nitrogen status of the fungus. Our results indicate a novel and central nitrate uptake-independent regulatory role for a eukaryotic nitrate transporter. The possible cellular mechanisms behind this regulation mode are discussed in the light of current knowledge on NRT2-type nitrate transporters in different eukaryotes.
Collapse
Affiliation(s)
- Minna J Kemppainen
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | | |
Collapse
|